Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 82(18): 3424-3437.e8, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113412

RESUMO

Cells can respond to stalled ribosomes by sensing ribosome collisions and employing quality control pathways. How ribosome stalling is resolved without collisions, however, has remained elusive. Here, focusing on noncolliding stalling exhibited by decoding-defective ribosomes, we identified Fap1 as a stalling sensor triggering 18S nonfunctional rRNA decay via polyubiquitination of uS3. Ribosome profiling revealed an enrichment of Fap1 at the translation initiation site but also an association with elongating individual ribosomes. Cryo-EM structures of Fap1-bound ribosomes elucidated Fap1 probing the mRNA simultaneously at both the entry and exit channels suggesting an mRNA stasis sensing activity, and Fap1 sterically hinders the formation of canonical collided di-ribosomes. Our findings indicate that individual stalled ribosomes are the potential signal for ribosome dysfunction, leading to accelerated turnover of the ribosome itself.


Assuntos
Biossíntese de Proteínas , Ribossomos , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/metabolismo
2.
J Biol Chem ; 298(7): 102084, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636512

RESUMO

Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.


Assuntos
Metionina Adenosiltransferase , S-Adenosilmetionina , Animais , Humanos , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Metilação , RNA Mensageiro/metabolismo , S-Adenosilmetionina/metabolismo
3.
EMBO J ; 38(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609991

RESUMO

Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality control). RQC requires Hel2-dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2-dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di-ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo-EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2-mediated cleavages upstream of the disome, governed by initial Not4-mediated monoubiquitination of eS7 and followed by Hel2-mediated K63-linked polyubiquitination. We propose that Hel2-mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC-uncoupled NGD outside the disome (NGDRQC-) can occur in a Not4-dependent manner.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Microscopia Crioeletrônica , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Biochem Biophys Res Commun ; 488(1): 122-128, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28483531

RESUMO

Up-frameshift (Upf) complex facilitates the degradation of aberrant mRNAs containing a premature termination codon (PTC) and its products in yeast. Here we report that Sse1, a member of the Hsp110 family, and Hsp70 play a crucial role in Upf-dependent degradation of the truncated FLAG-Pgk1-300 protein derived from PGK1 mRNA harboring a PTC at codon position 300. Sse1 was required for Upf-dependent rapid degradation of the FLAG-Pgk1-300. FLAG-Pgk1-300 was significantly destabilized in ATP hydrolysis defective sse1-1 mutant cells than in wild type cells. Consistently, Sse1 and Hsp70 reduced the level of an insoluble form of FLAG-Pgk1-300. We propose that the Sse1/Hsp70 complex maintains the solubility of FLAG-Pgk1-300, thereby stimulating its Upf-dependent degradation by the proteasomes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Commun ; 13(1): 6411, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302773

RESUMO

Translational stalling events that result in ribosome collisions induce Ribosome-associated Quality Control (RQC) in order to degrade potentially toxic truncated nascent proteins. For RQC induction, the collided ribosomes are first marked by the Hel2/ZNF598 E3 ubiquitin ligase to recruit the RQT complex for subunit dissociation. In yeast, uS10 is polyubiquitinated by Hel2, whereas eS10 is preferentially monoubiquitinated by ZNF598 in human cells for an unknown reason. Here, we characterize the ubiquitination activity of ZNF598 and its importance for human RQT-mediated subunit dissociation using the endogenous XBP1u and poly(A) translation stallers. Cryo-EM analysis of a human collided disome reveals a distinct composite interface, with substantial differences to yeast collided disomes. Biochemical analysis of collided ribosomes shows that ZNF598 forms K63-linked polyubiquitin chains on uS10, which are decisive for mammalian RQC initiation. The human RQT (hRQT) complex composed only of ASCC3, ASCC2 and TRIP4 dissociates collided ribosomes dependent on the ATPase activity of ASCC3 and the ubiquitin-binding capacity of ASCC2. The hRQT-mediated subunit dissociation requires the K63-linked polyubiquitination of uS10, while monoubiquitination of eS10 or uS10 is not sufficient. Therefore, we conclude that ZNF598 functionally marks collided mammalian ribosomes by K63-linked polyubiquitination of uS10 for the trimeric hRQT complex-mediated subunit dissociation.


Assuntos
Proteínas de Transporte , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Sci Rep ; 10(1): 3422, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099016

RESUMO

Ribosome stalling triggers the ribosome-associated quality control (RQC) pathway, which targets collided ribosomes and leads to subunit dissociation, followed by proteasomal degradation of the nascent peptide. In yeast, RQC is triggered by Hel2-dependent ubiquitination of uS10, followed by subunit dissociation mediated by the RQC-trigger (RQT) complex. In mammals, ZNF598-dependent ubiquitination of collided ribosomes is required for RQC, and activating signal cointegrator 3 (ASCC3), a component of the ASCC complex, facilitates RQC. However, the roles of other components and associated factors of the ASCC complex remain unknown. Here, we demonstrate that the human RQC-trigger (hRQT) complex, an ortholog of the yeast RQT complex, plays crucial roles in RQC. The hRQT complex is composed of ASCC3, ASCC2, and TRIP4, which are orthologs of the RNA helicase Slh1(Rqt2), ubiquitin-binding protein Cue3(Rqt3), and zinc-finger type protein yKR023W(Rqt4), respectively. The ATPase activity of ASCC3 and the ubiquitin-binding activity of ASCC2 are crucial for triggering RQC. Given the proposed function of the RQT complex in yeast, we propose that the hRQT complex recognizes the ubiquitinated stalled ribosome and induces subunit dissociation to facilitate RQC.


Assuntos
Complexos Multiproteicos/metabolismo , Ribossomos/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Science ; 368(6488)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32299921

RESUMO

Control of messenger RNA (mRNA) decay rate is intimately connected to translation elongation, but the spatial coordination of these events is poorly understood. The Ccr4-Not complex initiates mRNA decay through deadenylation and activation of decapping. We used a combination of cryo-electron microscopy, ribosome profiling, and mRNA stability assays to examine the recruitment of Ccr4-Not to the ribosome via specific interaction of the Not5 subunit with the ribosomal E-site in Saccharomyces cerevisiae This interaction occurred when the ribosome lacked accommodated A-site transfer RNA, indicative of low codon optimality. Loss of the interaction resulted in the inability of the mRNA degradation machinery to sense codon optimality. Our findings elucidate a physical link between the Ccr4-Not complex and the ribosome and provide mechanistic insight into the coupling of decoding efficiency with mRNA stability.


Assuntos
Códon , Elongação Traducional da Cadeia Peptídica , Estabilidade de RNA , Proteínas Repressoras/metabolismo , Ribonucleases/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Microscopia Crioeletrônica , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Ribonucleases/química , Ribonucleases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Fator de Iniciação de Tradução Eucariótico 5A
8.
Cell Rep ; 26(12): 3400-3415.e7, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893611

RESUMO

18S non-functional rRNA decay (NRD) eliminates non-functional 18S rRNA with deleterious mutations in the decoding center. Dissociation of the non-functional 80S ribosome into 40S and 60S subunits is a prerequisite step for degradation of the non-functional 18S rRNA. However, the mechanisms by which the non-functional ribosome is recognized and dissociated into subunits remain elusive. Here, we report that the sequential ubiquitination of non-functional ribosomes is crucial for subunit dissociation. 18S NRD requires Mag2-mediated monoubiquitination followed by Hel2- and Rsp5-mediated K63-linked polyubiquitination of uS3 at the 212th lysine residue. Determination of the aberrant 18S rRNA levels in sucrose gradient fractions revealed that the subunit dissociation of stalled ribosomes requires sequential ubiquitination of uS3 by E3 ligases and ATPase activity of Slh1 (Rqt2), as well as Asc1 and Dom34. We propose that sequential uS3 ubiquitination of the non-functional 80S ribosome induces subunit dissociation by Slh1, leading to degradation of the non-functional 18S rRNA.


Assuntos
Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinação , RNA Ribossômico 18S/genética , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
J Dermatol ; 45(12): 1463-1467, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30302839

RESUMO

TGM1 is the most common gene responsible for lamellar ichthyosis. Previous studies have suggested that patients with lamellar ichthyosis carrying two missense mutations in TGM1 show significantly less severe phenotypes than those with at least one truncating mutation in TGM1. Here, we report a patient with severe lamellar ichthyosis who was compound heterozygous for TGM1 missense mutations, including a novel one. A 22-year-old Japanese man presented with large, dark brown, plate-like scales on the extremities and small adherent scales on the face and trunk. His other clinical findings included ectropion, hair loss, hypohidrosis, hyperthermia in summer, palmoplantar keratoderma and constriction of the fingers. Dermoscopy revealed accentuated sulci cutis with numerous large keratotic plugs in the cristae cutis. Histologically, orthohyperkeratosis and mild acanthosis were noted. Electron microscopy showed reduced cornified envelope thickness and numerous lipid droplets in the stratum corneum. Mutation analysis revealed the patient to be compound heterozygous for missense mutations, c.620T>C (p.Leu207Pro) and c.1631A>G (p.Tyr544Cys), in TGM1. Furthermore, we showed that TGM1 enzymatic activity was largely absent in his epidermis. These findings led us to diagnose him as having lamellar ichthyosis. This study has two important notions. First, even two missense mutations in TGM1 can cause severe lamellar ichthyosis. Second, this is the first report of dermoscopic findings of lamellar ichthyosis, implicating the obstruction of sweat glands by keratotic plugs in the pathogenesis of hypohidrosis in the disease. In conclusion, this study provides further insights into genotype-phenotype correlations and pathogenesis in lamellar ichthyosis.


Assuntos
Ictiose Lamelar/genética , Transglutaminases/genética , Adulto , Análise Mutacional de DNA , Dermoscopia , Epiderme/metabolismo , Epiderme/patologia , Epiderme/ultraestrutura , Humanos , Ictiose Lamelar/diagnóstico por imagem , Ictiose Lamelar/patologia , Masculino , Microscopia Eletrônica , Mutação de Sentido Incorreto , Transglutaminases/metabolismo , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA