Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619111

RESUMO

Possible segregation of plasma membrane (PM) phosphoinositide metabolism in membrane lipid domains is not fully understood. We exploited two differently lipidated peptide sequences, L10 and S15, to mark liquid-ordered, cholesterol-rich (Lo) and liquid-disordered, cholesterol-poor (Ld) domains of the PM, often called raft and nonraft domains, respectively. Imaging of the fluorescent labels verified that L10 segregated into cholesterol-rich Lo phases of cooled giant plasma-membrane vesicles (GPMVs), whereas S15 and the dye FAST DiI cosegregated into cholesterol-poor Ld phases. The fluorescent protein markers were used as Förster resonance energy transfer (FRET) pairs in intact cells. An increase of homologous FRET between L10 probes showed that depleting membrane cholesterol shrank Lo domains and enlarged Ld domains, whereas a decrease of L10 FRET showed that adding more cholesterol enlarged Lo and shrank Ld Heterologous FRET signals between the lipid domain probes and phosphoinositide marker proteins suggested that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and phosphatidylinositol 4-phosphate (PtdIns4P) are present in both Lo and Ld domains. In kinetic analysis, muscarinic-receptor-activated phospholipase C (PLC) depleted PtdIns(4,5)P2 and PtdIns4P more rapidly and produced diacylglycerol (DAG) more rapidly in Lo than in Ld Further, PtdIns(4,5)P2 was restored more rapidly in Lo than in Ld Thus destruction and restoration of PtdIns(4,5)P2 are faster in Lo than in Ld This suggests that Lo is enriched with both the receptor G protein/PLC pathway and the PtdIns/PI4-kinase/PtdIns4P pathway. The significant kinetic differences of lipid depletion and restoration also mean that exchange of lipids between these domains is much slower than free diffusion predicts.


Assuntos
Microdomínios da Membrana/metabolismo , Peptídeos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Transformada , Colesterol/metabolismo , Difusão , Diglicerídeos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Cinética , Lipoilação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lipídeos de Membrana/metabolismo , Peptídeos/genética , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Lipossomas Unilamelares/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785595

RESUMO

MicroRNAs (miRNAs) have recently emerged as important regulators of ion channel expression. We show here that select miR-106b family members repress the expression of the KCNQ2 K+ channel protein by binding to the 3'-untranslated region of KCNQ2 messenger RNA. During the first few weeks after birth, the expression of miR-106b family members rapidly decreases, whereas KCNQ2 protein level inversely increases. Overexpression of miR-106b mimics resulted in a reduction in KCNQ2 protein levels. Conversely, KCNQ2 levels were up-regulated in neurons transfected with antisense miRNA inhibitors. By constructing more specific and stable forms of miR-106b controlling systems, we further confirmed that overexpression of precursor-miR-106b-5p led to a decrease in KCNQ current density and an increase in firing frequency of hippocampal neurons, while tough decoy miR-106b-5p dramatically increased current density and decreased neuronal excitability. These results unmask a regulatory mechanism of KCNQ2 channel expression in early postnatal development and hint at a role for miR-106b up-regulation in the pathophysiology of epilepsy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas do Tecido Nervoso , Neurônios , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 117(48): 30787-30798, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199590

RESUMO

Transmembrane 16A (TMEM16A, anoctamin1), 1 of 10 TMEM16 family proteins, is a Cl- channel activated by intracellular Ca2+ and membrane voltage. This channel is also regulated by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. We find that two splice variants of TMEM16A show different sensitivity to endogenous PI(4,5)P2 degradation, where TMEM16A(ac) displays higher channel activity and more current inhibition by PI(4,5)P2 depletion than TMEM16A(a). These two channel isoforms differ in the alternative splicing of the c-segment (exon 13). The current amplitude and PI(4,5)P2 sensitivity of both TMEM16A(ac) and (a) are significantly strengthened by decreased free cytosolic ATP and by conditions that decrease phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII). Noise analysis suggests that the augmentation of currents is due to a rise of single-channel current (i), but not of channel number (N) or open probability (PO). Mutagenesis points to arginine 486 in the first intracellular loop as a putative binding site for PI(4,5)P2, and to serine 673 in the third intracellular loop as a site for regulatory channel phosphorylation that modulates the action of PI(4,5)P2 In silico simulation suggests how phosphorylation of S673 allosterically and differently changes the structure of the distant PI(4,5)P2-binding site between channel splice variants with and without the c-segment exon. In sum, our study reveals the following: differential regulation of alternatively spliced TMEM16A(ac) and (a) by plasma membrane PI(4,5)P2, modification of these effects by channel phosphorylation, identification of the molecular sites, and mechanistic explanation by in silico simulation.


Assuntos
Processamento Alternativo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosfatidilinositóis/metabolismo , Regulação Alostérica , Animais , Anoctamina-1/química , Sítios de Ligação , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Relação Estrutura-Atividade
4.
Proc Natl Acad Sci U S A ; 115(42): E9934-E9943, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30257950

RESUMO

ß subunits of high voltage-gated Ca2+ (CaV) channels promote cell-surface expression of pore-forming α1 subunits and regulate channel gating through binding to the α-interaction domain (AID) in the first intracellular loop. We addressed the stability of CaV α1B-ß interactions by rapamycin-translocatable CaV ß subunits that allow drug-induced sequestration and uncoupling of the ß subunit from CaV2.2 channel complexes in intact cells. Without CaV α1B/α2δ1, all modified ß subunits, except membrane-tethered ß2a and ß2e, are in the cytosol and rapidly translocate upon rapamycin addition to anchors on target organelles: plasma membrane, mitochondria, or endoplasmic reticulum. In cells coexpressing CaV α1B/α2δ1 subunits, the translocatable ß subunits colocalize at the plasma membrane with α1B and stay there after rapamycin application, indicating that interactions between α1B and bound ß subunits are very stable. However, the interaction becomes dynamic when other competing ß isoforms are coexpressed. Addition of rapamycin, then, switches channel gating and regulation by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipid. Thus, expression of free ß isoforms around the channel reveals a dynamic aspect to the α1B-ß interaction. On the other hand, translocatable ß subunits with AID-binding site mutations are easily dissociated from CaV α1B on the addition of rapamycin, decreasing current amplitude and PI(4,5)P2 sensitivity. Furthermore, the mutations slow CaV2.2 current inactivation and shift the voltage dependence of activation to more positive potentials. Mutated translocatable ß subunits work similarly in CaV2.3 channels. In sum, the strong interaction of CaV α1B-ß subunits can be overcome by other free ß isoforms, permitting dynamic changes in channel properties in intact cells.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/metabolismo , Ativação do Canal Iônico/fisiologia , Fosfatidilinositóis/metabolismo , Sirolimo/metabolismo , Animais , Ligação Competitiva , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Isoformas de Proteínas , Subunidades Proteicas , Transporte Proteico , Ratos
5.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920953

RESUMO

TMEM16A is a Ca2+-activated Cl- channel that controls broad cellular processes ranging from mucus secretion to signal transduction and neuronal excitability. Recent studies have reported that membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an important cofactor that allosterically regulates TMEM16A channel activity. However, the detailed regulatory actions of PIP2 in splice variants of TMEM16A remain unclear. Here, we demonstrated that the attenuation of membrane phosphoinositide levels selectively inhibited the current amplitude of the TMEM16A(ac) isoform by decreasing the slow, but not instantaneous, Cl- currents, which are independent of the membrane potential and specific to PI(4,5)P2 depletion. The attenuation of endogenous PI(4,5)P2 levels by the activation of Danio rerio voltage-sensitive phosphatase (Dr-VSP) decreased the Cl- currents of TMEM16A(ac) but not the TMEM16A(a) isoform, which was abolished by the co-expression of PIP 5-kinase type-1γ (PIPKIγ). Using the rapamycin-inducible dimerization of exogenous phosphoinositide phosphatases, we further revealed that the stimulatory effects of phosphoinositide on TMEM16A(ac) channels were similar in various membrane potentials and specific to PI(4,5)P2, not PI4P and PI(3,4,5)P3. Finally, we also confirmed that PI(4,5)P2 resynthesis is essential for TMEM16A(ac) recovery from Dr-VSP-induced current inhibition. Our data demonstrate that membrane PI(4,5)P2 selectively modulates the gating of the TMEM16A(ac) channel in an agonistic manner, which leads to the upregulation of TMEM16A(ac) functions in physiological conditions.


Assuntos
Processamento Alternativo/genética , Anoctamina-1/genética , Cálcio/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Processamento Alternativo/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Anoctamina-1/química , Anoctamina-1/metabolismo , Membrana Celular/efeitos dos fármacos , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo , Receptor Muscarínico M1/metabolismo , Sirolimo/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(26): E3686-95, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27222577

RESUMO

Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation, emphasizing that VSPs can cleave the 3-phosphate of PI(3,4,5)P3.


Assuntos
Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Especificidade por Substrato
7.
Int J Mol Sci ; 20(18)2019 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500374

RESUMO

Alcohol causes diverse acute and chronic symptoms that often lead to critical health problems. Exposure to ethanol alters the activities of sympathetic neurons that control the muscles, eyes, and blood vessels in the brain. Although recent studies have revealed the cellular targets of ethanol, such as ion channels, the molecular mechanism by which alcohol modulates the excitability of sympathetic neurons has not been determined. Here, we demonstrated that ethanol increased the discharge of membrane potentials in sympathetic neurons by inhibiting the M-type or Kv7 channel consisting of the Kv7.2/7.3 subunits, which were involved in determining the membrane potential and excitability of neurons. Three types of sympathetic neurons, classified by their threshold of activation and firing patterns, displayed distinct sensitivities to ethanol, which were negatively correlated with the size of the Kv7 current that differs depending on the type of neuron. Using a heterologous expression system, we further revealed that the inhibitory effects of ethanol on Kv7.2/7.3 currents were facilitated or diminished by adjusting the amount of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). These results suggested that ethanol and PI(4,5)P2 modulated gating of the Kv7 channel in superior cervical ganglion neurons in an antagonistic manner, leading to regulation of the membrane potential and neuronal excitability, as well as the physiological functions mediated by sympathetic neurons.


Assuntos
Potenciais de Ação , Etanol/metabolismo , Canais de Potássio KCNQ/metabolismo , Neurônios/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Gânglio Cervical Superior/citologia , Biomarcadores , Membrana Celular/metabolismo , Células Cultivadas , Etanol/farmacologia , Expressão Gênica , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/genética
8.
Biochim Biophys Acta ; 1851(6): 844-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25241941

RESUMO

Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. This article is part of a Special Issue entitled Phosphoinositides.


Assuntos
Canais de Cálcio/metabolismo , Canais de Cloreto/metabolismo , Canais Epiteliais de Sódio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cálcio/genética , Membrana Celular/química , Membrana Celular/metabolismo , Canais de Cloreto/genética , Canais Epiteliais de Sódio/genética , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Canais de Potássio/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Canais de Potencial de Receptor Transitório/genética , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
9.
Biophys J ; 109(5): 922-35, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26331250

RESUMO

The auxiliary ß subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels. Recently, it was revealed that ß2e associates with the plasma membrane through an electrostatic interaction between N-terminal basic residues and anionic phospholipids. However, a molecular-level understanding of ß-subunit membrane recruitment in structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays, and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the ß2e subunit is recruited electrostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-terminal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1, Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the ß2e subunit than distal residues from the N-terminus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attachment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects of a mutated ß2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing phosphatase (VSP), a double mutation in the N-terminus of ß2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3 channels by ∼3-fold compared with wild-type ß2e subunit. Together, our results suggest that membrane targeting of the ß2e subunit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-ß2e interaction observed here provides a molecular insight into general principles for protein binding to the plasma membrane, as well as the regulatory roles of phospholipids in transporters and ion channels.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Membrana Celular/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo N/metabolismo , Fenômenos Eletrofisiológicos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espaço Intracelular/metabolismo , Lipossomos/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Conformação Proteica , Transporte Proteico , Ratos , Termodinâmica
10.
J Biol Chem ; 289(37): 25797-811, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25077971

RESUMO

Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Aplysia/enzimologia , Isoformas de Proteínas/metabolismo , Sinapses/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/genética , Sequência de Aminoácidos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Membranas Intracelulares/efeitos dos fármacos , Isoformas de Proteínas/genética , Multimerização Proteica/genética , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sinapses/genética
11.
Proc Natl Acad Sci U S A ; 109(8): 3161-6, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22308488

RESUMO

The ß-subunits of voltage-gated Ca(2+) (Ca(V)) channels regulate the functional expression and several biophysical properties of high-voltage-activated Ca(V) channels. We find that Ca(V) ß-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). When Ca(V)1.3, -2.1, or -2.2 channels are cotransfected with the ß3-subunit, a cytosolic protein, they can be inhibited by activating a voltage-sensitive lipid phosphatase to deplete PIP(2). When these channels are coexpressed with a ß2a-subunit, a palmitoylated peripheral membrane protein, the inhibition is much smaller. PIP(2) sensitivity could be increased by disabling the two palmitoylation sites in the ß2a-subunit. To further test effects of membrane targeting of Ca(V) ß-subunits on PIP(2) regulation, the N terminus of Lyn was ligated onto the cytosolic ß3-subunit to confer lipidation. This chimera, like the Ca(V) ß2a-subunit, displayed plasma membrane localization, slowed the inactivation of Ca(V)2.2 channels, and increased the current density. In addition, the Lyn-ß3 subunit significantly decreased Ca(V) channel inhibition by PIP(2) depletion. Evidently lipidation and membrane anchoring of Ca(V) ß-subunits compete with the PIP(2) regulation of high-voltage-activated Ca(V) channels. Compared with expression with Ca(V) ß3-subunits alone, inhibition of Ca(V)2.2 channels by PIP(2) depletion could be significantly attenuated when ß2a was coexpressed with ß3. Our data suggest that the Ca(V) currents in neurons would be regulated by membrane PIP(2) to a degree that depends on their endogenous ß-subunit combinations.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Ativação do Canal Iônico , Fosfatidilinositol 4,5-Difosfato/metabolismo , Subunidades Proteicas/metabolismo , Animais , Células HEK293 , Humanos , Lipoilação , Fosfoproteínas Fosfatases/metabolismo , Transporte Proteico , Peixe-Zebra
12.
Nat Commun ; 15(1): 7008, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143141

RESUMO

Proton-activated chloride (PAC) channels, ubiquitously expressed in tissues, regulate intracellular Cl- levels and cell death following acidosis. However, molecular mechanisms and signaling pathways involved in PAC channel modulation are largely unknown. Herein, we determine that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] of the plasma membrane inner leaflet is essential for the proton activation of PAC channels. PI(4,5)P2 depletion by activating phosphatidylinositol 5-phosphatases or Gq protein-coupled muscarinic receptors substantially inhibits human PAC currents. In excised inside-out patches, PI(4,5)P2 application to the cytoplasmic side increases the currents. Structural simulation reveals that the putative PI(4,5)P2-binding site is localized within the cytosol in resting state but shifts to the cell membrane's inner surface in an activated state and interacts with inner leaflet PI(4,5)P2. Alanine neutralization of basic residues near the membrane-cytosol interface of the transmembrane helice 2 significantly attenuates PAC currents. Overall, our study uncovers a modulatory mechanism of PAC channel through inner membrane PI(4,5)P2.


Assuntos
Membrana Celular , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/metabolismo , Humanos , Membrana Celular/metabolismo , Células HEK293 , Canais de Cloreto/metabolismo , Canais de Cloreto/genética , Prótons , Sítios de Ligação , Animais , Técnicas de Patch-Clamp , Anoctaminas/metabolismo , Anoctaminas/genética , Anoctaminas/química , Proteínas de Transferência de Fosfolipídeos
13.
Mol Cells ; : 100124, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39424230

RESUMO

Neuropeptides play a critical role in regulating behaviors across organisms, but the precise mechanisms by which neuropeptides orchestrate complex behavioral programs are not fully understood. Here, we show that the FMRFamide-like neuropeptide FLP-12 signaling from the SMB head motor neurons, modulates head locomotive behaviors, including stomatal oscillation in C. elegans. lim-4 mutants, in which the SMB neurons are not properly specified, exhibited various head and body locomotive defects, including stomatal oscillation. Chronic activation or inhibition of neuropeptidergic signaling in the SMB motor neurons resulted in a decrease or increase in stomatal oscillation, respectively. The flp-12 neuropeptide gene is expressed and acts in the SMB neurons to regulate head and body locomotion, including stomatal oscillation. Moreover, the frpr-8 GPCR and gpa-7 Gα genes are expressed in the AVD command interneurons to relay the FLP-12 signal to mediate stomatal oscillation. Finally, heterologous expression of FRPR-8 either Xenopus oocytes or HEK293T cells conferred FLP-12 induced responses. Taken together, these results indicate that the C. elegans FMRFamide neuropeptide FLP-12 acts as a modulator of stomatal oscillation via the FRPR-8 GPCR and the GPA-7 G-protein.

14.
iScience ; 27(7): 110248, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39015148

RESUMO

Appropriate ingestion of salt is essential for physiological processes such as ionic homeostasis and neuronal activity. Generally, low concentrations of salt elicit attraction, while high concentrations elicit aversive responses. Here, we observed that sugar neurons in the L sensilla of the Drosophila labellum cf. responses to NaCl, while sugar neurons in the S-c sensilla do not respond to NaCl, suggesting that gustatory receptor neurons involved in NaCl sensing may employ diverse molecular mechanisms. Through an RNAi screen of the entire Ir and ppk gene families and molecular genetic approaches, we identified IR76b, IR25a, and IR56b as necessary components for NaCl sensing in the Drosophila labellum. Co-expression of these three IRs in heterologous systems such as S2 cells or Xenopus oocytes resulted in a current in response to sodium stimulation, suggesting formation of a sodium-sensing complex. Our results should provide insights for research on the diverse combinations constituting salt receptor complexes.

15.
J Gen Physiol ; 155(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36534082

RESUMO

Normal alcohols (n-alcohols) can induce anesthetic effects by acting on neuronal ion channels. Recent studies have revealed the effects of n-alcohols on various ion channels; however, the underlying molecular mechanisms remain unclear. Here, we provide evidence that long-chain n-alcohols have dual effects on Kv7.2/7.3 channels, resulting in channel activation as the net effect. Using heterologous expression systems, we found that n-alcohols could differentially regulate the Kv7.2/7.3 channel depending on their chain length. Treatment with short-chain ethanol and propanol diminished Kv7.2/7.3 currents, whereas treatment with long-chain hexanol and octanol enhanced the currents. However, the long-chain alcohols failed to potentiate Kv7.2 currents pre-activated by retigabine. Instead, they inhibited the currents, similar to short-chain ethanol. The stimulatory effect of the long-chain n-alcohols was also converted into an inhibitory one in the mutant Kv7.2(W236L) channels, while the inhibitory effect of ethanol did not differ between wild-type Kv7.2 and mutant Kv7.2(W236L). The inhibition of currents by n-alcohols was also seen in Kv7.1 channel which does not have the tryptophan (W) residue in S5. These findings suggest that long-chain n-alcohols exhibit dual effects through independent working sites on the Kv7.2 channel. Finally, we confirmed that the hydroxyl group with a negative electrostatic potential surface is essential for the dual actions of n-alcohol. Together, our data suggest that long-chain n-alcohols regulate Kv7.2/7.3 channels by interacting with both stimulatory and inhibitory sites and that their stimulatory action depends on the conserved tryptophan 236 residue in S5 and could be important for triggering their anesthetic effects.


Assuntos
Etanol , Triptofano , Triptofano/metabolismo , Etanol/farmacologia , Octanóis
16.
Nat Commun ; 14(1): 1276, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882424

RESUMO

G protein-coupled receptors (GPCRs) regulate diverse intracellular signaling pathways through the activation of heterotrimeric G proteins. However, the effects of the sequential activation-deactivation cycle of G protein on the conformational changes of GPCRs remains unknown. By developing a Förster resonance energy transfer (FRET) tool for human M3 muscarinic receptor (hM3R), we find that a single-receptor FRET probe can display the consecutive structural conversion of a receptor by G protein cycle. Our results reveal that the G protein activation evokes a two-step change in the hM3R structure, including the fast step mediated by Gq protein binding and the subsequent slower step mediated by the physical separation of the Gαq and Gßγ subunits. We also find that the separated Gαq-GTP forms a stable complex with the ligand-activated hM3R and phospholipase Cß. In sum, the present study uncovers the real-time conformational dynamics of innate hM3R during the downstream Gq protein cycle.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP , Humanos , Fosfolipase C beta
17.
Cell Rep ; 42(1): 112003, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36641749

RESUMO

Linear nevus sebaceous syndrome (LNSS) is a neurocutaneous disorder caused by somatic gain-of-function mutations in KRAS or HRAS. LNSS brains have neurodevelopmental defects, including cerebral defects and epilepsy; however, its pathological mechanism and potentials for treatment are largely unclear. We show that introduction of KRASG12V in the developing mouse cortex results in subcortical nodular heterotopia and enhanced excitability, recapitulating major pathological manifestations of LNSS. Moreover, we show that decreased firing frequency of inhibitory neurons without KRASG12V expression leads to disrupted excitation and inhibition balance. Transcriptional profiling after destabilization domain-mediated clearance of KRASG12V in human neural progenitors and differentiating neurons identifies reversible functional networks underlying LNSS. Neurons expressing KRASG12V show molecular changes associated with delayed neuronal maturation, most of which are restored by KRASG12V clearance. These findings provide insights into the molecular networks underlying the reversibility of some of the neuropathologies observed in LNSS caused by dysregulation of the RAS pathway.


Assuntos
Epilepsia , Nevo Sebáceo de Jadassohn , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Nevo Sebáceo de Jadassohn/genética , Nevo Sebáceo de Jadassohn/patologia , Neuropatologia , Mutação/genética
18.
Cell Rep ; 42(10): 113183, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37777962

RESUMO

Recent developments in genome sequencing have expanded the knowledge of genetic factors associated with late-onset Alzheimer's disease (AD). Among them, genetic variant ε4 of the APOE gene (APOE4) confers the greatest disease risk. Dysregulated glucose metabolism is an early pathological feature of AD. Using isogenic ApoE3 and ApoE4 astrocytes derived from human induced pluripotent stem cells, we find that ApoE4 increases glycolytic activity but impairs mitochondrial respiration in astrocytes. Ultrastructural and autophagy flux analyses show that ApoE4-induced cholesterol accumulation impairs lysosome-dependent removal of damaged mitochondria. Acute treatment with cholesterol-depleting agents restores autophagic activity, mitochondrial dynamics, and associated proteomes, and extended treatment rescues mitochondrial respiration in ApoE4 astrocytes. Taken together, our study provides a direct link between ApoE4-induced lysosomal cholesterol accumulation and abnormal oxidative phosphorylation.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Astrócitos/metabolismo , Fosforilação Oxidativa , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , Apolipoproteína E3/metabolismo , Colesterol/metabolismo , Doença de Alzheimer/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
19.
Elife ; 112022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374183

RESUMO

High-voltage-activated Ca2+ (CaV) channels that adjust Ca2+ influx upon membrane depolarization are differentially regulated by phosphatidylinositol 4,5-bisphosphate (PIP2) in an auxiliary CaV ß subunit-dependent manner. However, the molecular mechanism by which the ß subunits control the PIP2 sensitivity of CaV channels remains unclear. By engineering various α1B and ß constructs in tsA-201 cells, we reported that at least two PIP2-binding sites, including the polybasic residues at the C-terminal end of I-II loop and the binding pocket in S4II domain, exist in the CaV2.2 channels. Moreover, they were distinctly engaged in the regulation of channel gating depending on the coupled CaV ß2 subunits. The membrane-anchored ß subunit abolished the PIP2 interaction of the phospholipid-binding site in the I-II loop, leading to lower PIP2 sensitivity of CaV2.2 channels. By contrast, PIP2 interacted with the basic residues in the S4II domain of CaV2.2 channels regardless of ß2 isotype. Our data demonstrated that the anchoring properties of CaV ß2 subunits to the plasma membrane determine the biophysical states of CaV2.2 channels by regulating PIP2 coupling to the nonspecific phospholipid-binding site in the I-II loop.


Assuntos
Canais de Cálcio Tipo N , Fosfatidilinositóis , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Sítios de Ligação
20.
Rice (N Y) ; 15(1): 39, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859217

RESUMO

Understanding pollen tube growth is critical for crop yield maintenance. The pollen tube provides a path for sperm cells for fertilization with egg cells. Cells must be subdivided into functionally and structurally distinct compartments for polar tip growth, and phosphoinositides are thought to be one of the facilitators for polarization during pollen tube growth. OsSNDP3 encodes Sec14-nodulin domain-containing protein and localizes in the nucleus and the microdomains of the plasma membrane in tobacco leaf epidermis cells. OsSNDP3 is thought to bind with phosphatidylinositol 4,5-bisphosphate based on the data including the information of basic amino acids in the C-terminal and colocalization with 2X Pleckstrin homology domain of Phospholipase C delta-1. OsSNDP3 interacts with a protein that contains a class I nodulin domain. We discovered that OsSNDP3 plays a significant role in pollen tube germination using CRISPR/Cas9 systems, whereas another pollen-preferential Sec14-nodulin domain-containing protein, OsSNDP2, additively functions with OsSNDP3 during pollen tube germination. Gene Ontology analysis using downregulated genes in ossndp3 indicated that the expression of genes involved in the phosphatidylinositol metabolic process and tip growth was significantly altered in ossndp3. OsSNDP3 aids pollen polar tip growth by binding with phosphatidylinositol 4,5-bisphosphate. We can better understand the roles of phosphoinositides during pollen tube growth by studying the functions of OsSNDP3 and OsSNDP2. And downregulated genes in ossndp3 might be useful targets for future research on polar tip growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA