RESUMO
The deep trefoil knot architecture is unique to the SpoU and tRNA methyltransferase D (TrmD) (SPOUT) family of methyltransferases (MTases) in all three domains of life. In bacteria, TrmD catalyzes the N(1)-methylguanosine (m(1)G) modification at position 37 in transfer RNAs (tRNAs) with the (36)GG(37) sequence, using S-adenosyl-l-methionine (AdoMet) as the methyl donor. The m(1)G37-modified tRNA functions properly to prevent +1 frameshift errors on the ribosome. Here we report the crystal structure of the TrmD homodimer in complex with a substrate tRNA and an AdoMet analog. Our structural analysis revealed the mechanism by which TrmD binds the substrate tRNA in an AdoMet-dependent manner. The trefoil-knot center, which is structurally conserved among SPOUT MTases, accommodates the adenosine moiety of AdoMet by loosening/retightening of the knot. The TrmD-specific regions surrounding the trefoil knot recognize the methionine moiety of AdoMet, and thereby establish the entire TrmD structure for global interactions with tRNA and sequential and specific accommodations of G37 and G36, resulting in the synthesis of m(1)G37-tRNA.
Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Haemophilus influenzae/enzimologia , RNA de Transferência/metabolismo , Thermotoga maritima/enzimologia , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Sequência de Aminoácidos , Anticódon/genética , Sequência de Bases , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Guanina/metabolismo , Cinética , Metilação , Modelos Moleculares , Dados de Sequência Molecular , RNA de Transferência/química , RNA de Transferência/genética , S-Adenosilmetionina , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily. It functions as a ligand-activated transcription factor and plays important roles in the regulation of adipocyte differentiation, type 2 diabetes mellitus, and inflammation. Many PPARγ agonists bind to the canonical ligand-binding pocket near the activation function-2 (AF-2) helix (i.e., helix H12) of the ligand-binding domain (LBD). More recently, an alternate ligand-binding site was identified in PPARγ LBD; it is located beside the Ω loop between the helices H2' and H3. We reported previously that the chirality of two optimized enantiomeric PPARγ ligands (S35 and R35) differentiates their PPARγ transcriptional activity, binding affinity, and inhibitory activity toward Cdk5 (cyclin-dependent kinase 5)-mediated phosphorylation of PPARγ at Ser245 (in PPARγ1 numbering; Ser273 in PPARγ2 numbering). S35 is a PPARγ phosphorylation inhibitor with promising glucose uptake potential, whereas R35 behaves as a potent conventional PPARγ agonist. To provide a structural basis for understanding the differential activities of these enantiomeric ligands, we have determined crystal structures of the PPARγ LBD in complex with either S35 or R35. S35 and R35 bind to the PPARγ LBD in significantly different manners. The partial agonist S35 occupies the alternate site near the Ω loop, whereas the full agonist R35 binds entirely to the canonical LBP. Alternate site binding of S35 affects the PPARγ transactivation and the inhibitory effect on PPARγ Ser245 phosphorylation. This study provides a useful platform for the development of a new generation of PPARγ ligands as anti-diabetic drug candidates.
Assuntos
Hipoglicemiantes/farmacologia , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Hipoglicemiantes/química , Modelos Moleculares , Estrutura Molecular , PPAR gama/metabolismo , Estereoisomerismo , Tiazolidinedionas/químicaRESUMO
The Mycobacterium tuberculosis Rv2258c protein is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase (MTase). Here, we have determined its crystal structure in three forms: a ligand-unbound form, a binary complex with sinefungin (SFG), and a binary complex with S-adenosyl-L-homocysteine (SAH). The monomer structure of Rv2258c consists of two domains which are linked by a long α-helix. The N-terminal domain is essential for dimerization and the C-terminal domain has the Class I MTase fold. Rv2258c forms a homodimer in the crystal, with the N-terminal domains facing each other. It also exists as a homodimer in solution. A DALI structural similarity search with Rv2258c reveals that the overall structure of Rv2258c is very similar to small-molecule SAM-dependent MTases. Rv2258c interacts with the bound SFG (or SAH) in an extended conformation maintained by a network of hydrogen bonds and stacking interactions. Rv2258c has a relatively large hydrophobic cavity for binding of the methyl-accepting substrate, suggesting that bulky nonpolar molecules with aromatic rings might be targeted for methylation by Rv2258c in M. tuberculosis. However, the ligand-binding specificity and the biological role of Rv2258c remain to be elucidated due to high variability of the amino acid residues defining the substrate-binding site.
Assuntos
Cristalografia por Raios X , Hidrolases/química , Mycobacterium tuberculosis/enzimologia , Conformação Proteica , Sequência de Aminoácidos/genética , Sítios de Ligação , Ligação de Hidrogênio , Hidrolases/genética , Hidrolases/metabolismo , Ligantes , Metilação , Ligação Proteica , Estrutura Secundária de Proteína , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , Especificidade por SubstratoRESUMO
Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of l,d-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known l,d-transpeptidases. Mass analyses confirm that Csd6 functions only as an l,d-carboxypeptidase and not as an l,d-transpeptidase. The d-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of l,d-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori.
Assuntos
Carboxipeptidases/metabolismo , Forma Celular , Helicobacter pylori/citologia , Helicobacter pylori/enzimologia , Sequência de Aminoácidos , Carboxipeptidases/química , Domínio Catalítico , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Açúcares Ácidos/metabolismoRESUMO
Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate. It is the penultimate enzyme in both the mandelate pathway and the d-phenylglycine degradation pathway. The ThDP-dependent Enzyme Engineering Database (TEED) now lists more than 800 sequences annotated as BFDCs, including one from Mycobacterium smegmatis (MsBFDC). However, there is no evidence that either pathway for benzoylformate formation exists in the M. smegmatis genome. Further, sequence alignments of MsBFDC with the well characterized enzyme isolated from Pseudomonas putida (PpBFDC) indicate that there will be active site substitutions in MsBFDC likely to reduce activity with benzoylformate. Taken together these data would suggest that the annotation is unlikely to be correct. To test this hypothesis the putative MsBFDC was cloned, expressed, purified, and the X-ray structure was solved to a resolution of 2.2Å. While showing no evidence for ThDP in the active site, the structure was very similar to that of PpBFDC. A number of 2-oxo acids were tested as substrates. For MsBFDC the K(m) value for benzoylformate was ~23 mM, nearly 100-fold greater than that of PpBFDC while the k(cat) value was reduced 60-fold. These values would suggest that benzoylformate is not the physiological substrate for this enzyme, and that annotation as a 2-oxo acid decarboxylase may be more appropriate.
Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Glioxilatos/química , Ácidos Mandélicos/química , Mycobacterium smegmatis/enzimologia , Tiamina Pirofosfato/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glioxilatos/metabolismo , Cinética , Ácidos Mandélicos/metabolismo , Mycobacterium smegmatis/genética , Tiamina Pirofosfato/metabolismoRESUMO
Valosin-containing protein (VCP), also known as p97, is an AAA(+) ATPase that plays an essential role in a broad array of cellular processes including the endoplasmic reticulum-associated degradation (ERAD) pathway. Recently, ERAD-specific deubiquitinating enzymes have been reported to be physically associated with VCP, although the exact mechanism is not yet clear. Among these enzymes is ovarian tumor domain-containing protein 1 (OTU1). Here, we report the structural basis for interaction between VCP and OTU1. The crystal structure of the ubiquitin regulatory X-like (UBXL) domain of OTU1 (UBXLOTU1) complexed to the N-terminal domain of VCP (NVCP) at 1.8-Å resolution reveals that UBXLOTU1 adopts a ubiquitin-like fold and binds at the interface of two subdomains of NVCP using the (39)GYPP(42) loop of UBXLOTU1 with the two prolines in cis- and trans-configurations, respectively. A mutagenesis study shows that this loop is not only critical for the interaction with VCP but also for its role in the ERAD pathway. Negative staining EM shows that one molecule of OTU1 binds to one VCP hexamer, and isothermal titration calorimetry suggests that the two proteins bind with a KD of 0.71 µM. Analytical size exclusion chromatography and isothermal titration calorimetry demonstrates that OTU1 can bind VCP in both the presence and absence of a heterodimer formed by ubiquitin fusion degradation protein 1 and nuclear localization protein 4.
Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Células HEK293 , Humanos , Immunoblotting , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Proteína com ValosinaRESUMO
Helicobacter pylori is associated with various gastrointestinal diseases such as gastritis, ulcers and gastric cancer. Its colonization of the human gastric mucosa requires high motility, which depends on its helical cell shape. Seven cell shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 and csd6) have been identified in H. pylori. Their proteins play key roles in determining the cell shape through modifications of the cell-wall peptidoglycan by the alteration of cross-linking or by the trimming of peptidoglycan muropeptides. Among them, Csd3 (also known as HdpA) is a bifunctional enzyme. Its D,D-endopeptidase activity cleaves the D-Ala(4)-mDAP(3) peptide bond between cross-linked muramyl tetrapeptides and pentapeptides. It is also a D,D-carboxypeptidase that cleaves off the terminal D-Ala(5) from the muramyl pentapeptide. Here, the crystal structure of this protein has been determined, revealing the organization of its three domains in a latent and inactive state. The N-terminal domain 1 and the core of domain 2 share the same fold despite a very low level of sequence identity, and their surface-charge distributions are different. The C-terminal LytM domain contains the catalytic site with a Zn(2+) ion, like the similar domains of other M23 metallopeptidases. Domain 1 occludes the active site of the LytM domain. The core of domain 2 is held against the LytM domain by the C-terminal tail region that protrudes from the LytM domain.
Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/enzimologia , Metaloproteases/química , Zinco/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Zinco/metabolismoRESUMO
The intracellular pathogen Mycobacterium tuberculosis (Mtb) causes tuberculosis. Enhanced intracellular survival (Eis) protein, secreted by Mtb, enhances survival of Mycobacterium smegmatis (Msm) in macrophages. Mtb Eis was shown to suppress host immune defenses by negatively modulating autophagy, inflammation, and cell death through JNK-dependent inhibition of reactive oxygen species (ROS) generation. Mtb Eis was recently demonstrated to contribute to drug resistance by acetylating multiple amines of aminoglycosides. However, the mechanism of enhanced intracellular survival by Mtb Eis remains unanswered. Therefore, we have characterized both Mtb and Msm Eis proteins biochemically and structurally. We have discovered that Mtb Eis is an efficient N(ε)-acetyltransferase, rapidly acetylating Lys55 of dual-specificity protein phosphatase 16 (DUSP16)/mitogen-activated protein kinase phosphatase-7 (MKP-7), a JNK-specific phosphatase. In contrast, Msm Eis is more efficient as an N(α)-acetyltransferase. We also show that Msm Eis acetylates aminoglycosides as readily as Mtb Eis. Furthermore, Mtb Eis, but not Msm Eis, inhibits LPS-induced JNK phosphorylation. This functional difference against DUSP16/MKP-7 can be understood by comparing the structures of two Eis proteins. The active site of Mtb Eis with a narrow channel seems more suitable for sequence-specific recognition of the protein substrate than the pocket-shaped active site of Msm Eis. We propose that Mtb Eis initiates the inhibition of JNK-dependent autophagy, phagosome maturation, and ROS generation by acetylating DUSP16/MKP-7. Our work thus provides insight into the mechanism of suppressing host immune responses and enhancing mycobacterial survival within macrophages by Mtb Eis.
Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/metabolismo , Conformação Proteica , Acetilação , Acetiltransferases , Animais , Sequência de Bases , Western Blotting , Clonagem Molecular , Cristalização , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Humanos , Cinética , Macrófagos , Camundongos , Dados de Sequência Molecular , Mycobacterium smegmatis/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Difração de Raios XRESUMO
In Escherichia coli, seven genes (pstS, pstC, pstA, pstB, phoU, phoR, and phoB) are involved in sensing environmental phosphate (Pi) and controlling the expression of the Pho regulon. PhoU is a negative regulator of the Pi-signaling pathway and modulates Pi transport through Pi transporter proteins (PstS, PstC, PstA, and PstB) through the two-component system PhoR and PhoB. Inactivation of PhoY2, one of the two PhoU homologs in Mycobacterium tuberculosis, causes defects in persistence phenotypes and increased susceptibility to antibiotics and stresses. Despite the important biological role, the mechanism of PhoU function is still unknown. Here we have determined the crystal structure of PhoU from Pseudomonas aeruginosa. It exists as a dimer in the crystal, with each monomer consisting of two structurally similar three-helix bundles. Our equilibrium sedimentation measurements support the reversible monomer-dimer equilibrium model in which P. aeruginosa PhoU exists in solution predominantly as dimers, with monomers in a minor fraction, at low protein concentrations. The dissociation constant for PhoU dimerization is 3.2×10(-6)M. The overall structure of P. aeruginosa PhoU dimer resembles those of Aquifex aeolicus PhoU and Thermotoga maritima PhoU2. However, it shows distinct structural features in some loops and the dimerization pattern.
Assuntos
Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Pseudomonas aeruginosa/química , Transdução de Sinais , Fatores de Transcrição/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Fosfatos/química , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , Multimerização Proteica , Regulon/genética , Fatores de Transcrição/genéticaRESUMO
The jhp0933 gene in the plasticity region of Helicobacter pylori J99 encodes a hypothetical protein (JHP933), which may play some roles in pathogenesis. Here, we have determined the crystal structure of JHP933 at 2.17 Å. It represents the first crystal structure of the DUF1814 protein family. JHP933 consists of two domains: an N-terminal domain of the nucleotidyltransferase (NTase) fold and a C-terminal helix bundle domain. A highly positively charged surface patch exists adjacent to the putative NTP binding site. Structural similarity of JHP933 to known NTases is very remote, suggesting that it may function as a novel NTase.
Assuntos
Motivos de Aminoácidos/genética , Proteínas de Bactérias/ultraestrutura , Helicobacter pylori/enzimologia , Nucleotidiltransferases/ultraestrutura , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Helicobacter pylori/genética , Modelos Moleculares , Nucleotidiltransferases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de ProteínaRESUMO
Helicobacter pylori infection causes a variety of gastrointestinal diseases, including peptic ulcers and gastric cancer. Its colonization of the gastric mucosa of the human stomach is a prerequisite for survival in the stomach. Colonization depends on its motility, which is facilitated by the helical shape of the bacterium. In H. pylori, cross-linking relaxation or trimming of peptidoglycan muropeptides affects the helical cell shape. Csd4 has been identified as one of the cell shape-determining peptidoglycan hydrolases in H. pylori. It is a Zn(2+)-dependent D,L-carboxypeptidase that cleaves the bond between the γ-D-Glu and the mDAP of the non-cross-linked muramyltripeptide (muramyl-L-Ala-γ-D-Glu-mDAP) of the peptidoglycan to produce the muramyldipeptide (muramyl-L-Ala-γ-D-Glu) and mDAP. Here, the crystal structure of H. pylori Csd4 (HP1075 in strain 26695) is reported in three different states: the ligand-unbound form, the substrate-bound form and the product-bound form. H. pylori Csd4 consists of three domains: an N-terminal D,L-carboxypeptidase domain with a typical carboxypeptidase fold, a central ß-barrel domain with a novel fold and a C-terminal immunoglobulin-like domain. The D,L-carboxypeptidase domain recognizes the substrate by interacting primarily with the terminal mDAP moiety of the muramyltripeptide. It undergoes a significant structural change upon binding either mDAP or the mDAP-containing muramyltripeptide. It it also shown that Csd5, another cell-shape determinant in H. pylori, is capable of interacting not only with H. pylori Csd4 but also with the dipeptide product of the reaction catalyzed by Csd4.
Assuntos
Proteínas de Bactérias/química , Carboxipeptidases/química , Infecções por Helicobacter/microbiologia , Helicobacter pylori/química , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carboxipeptidases/metabolismo , Cristalografia por Raios X , Helicobacter pylori/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Oligopeptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de SequênciaRESUMO
Apoptosis inhibitor 5 (API5) is an anti-apoptotic protein that is up-regulated in various cancer cells. Here, we present the crystal structure of human API5. API5 exhibits an elongated all α-helical structure. The N-terminal half of API5 is similar to the HEAT repeat and the C-terminal half is similar to the ARM (Armadillo-like) repeat. HEAT and ARM repeats have been implicated in protein-protein interactions, suggesting that the cellular roles of API5 may be to mediate protein-protein interactions. Various components of multiprotein complexes have been identified as API5-interacting protein partners, suggesting that API5 may act as a scaffold for multiprotein complexes. API5 exists as a monomer, and the functionally important heptad leucine repeat does not exhibit the predicted a dimeric leucine zipper. Additionally, Lys-251, which can be acetylated in cells, plays important roles in the inhibition of apoptosis under serum deprivation conditions. The acetylation of this lysine also affects the stability of API5 in cells.
Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Células Jurkat , Leucina , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de ProteínaRESUMO
Difficulty in the treatment of tuberculosis and growing drug resistance in Mycobacterium tuberculosis (Mtb) are a global health issue. Carbapenems inactivate L,D-transpeptidases; meropenem, when administered with clavulanate, showed in vivo activity against extensively drug-resistant Mtb strains. LdtMt2 (Rv2518c), one of two functional L,D-transpeptidases in Mtb, is predominantly expressed over LdtMt1 (Rv0116c). Here, the crystal structure of N-terminally truncated LdtMt2 (residues Leu131-Ala408) is reported in both ligand-free and meropenem-bound forms. The structure of meropenem-inhibited LdtMt2 provides a detailed structural view of the interactions between a carbapenem drug and Mtb L,D-transpeptidase. The structures revealed that the catalytic L,D-transpeptidase domain of LdtMt2 is preceded by a bacterial immunogloblin-like Big_5 domain and is followed by an extended C-terminal tail that interacts with both domains. Furthermore, it is shown using mass analyses that meropenem acts as a suicide inhibitor of LdtMt2. Upon acylation of the catalytic Cys354 by meropenem, the `active-site lid' undergoes a large conformational change to partially cover the active site so that the bound meropenem is accessible to the bulk solvent via three narrow paths. This work will facilitate structure-guided discovery of L,D-transpeptidase inhibitors as novel antituberculosis drugs against drug-resistant Mtb.
Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Peptidil Transferases/antagonistas & inibidores , Peptidil Transferases/química , Tienamicinas/farmacologia , Cristalografia por Raios X , Meropeném , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologiaRESUMO
Maturation of cytochrome c is carried out in the bacterial periplasm, where specialized thiol-disulfide oxidoreductases provide the correct reduction of oxidized apocytochrome c before covalent haem attachment. HP0377 from Helicobacter pylori is a thioredoxin-fold protein that has been implicated as a component of system II for cytochrome c assembly and shows limited sequence similarity to Escherichia coli DsbC, a disulfide-bond isomerase. To better understand the role of HP0377, its crystal structures have been determined in both reduced and partially oxidized states, which are highly similar to each other. Sedimentation-equilibrium experiments indicate that HP0377 is monomeric in solution. HP0377 adopts a thioredoxin fold but shows distinctive variations as in other thioredoxin-like bacterial periplasmic proteins. The active site of HP0377 closely resembles that of E. coli DsbC. A reductase assay suggests that HP0377 may play a role as a reductase in the biogenesis of holocytochrome c553 (HP1227). Binding experiments indicate that it can form a covalent complex with HP0518, a putative L,D-transpeptidase with a catalytic cysteine residue, via a disulfide bond. Furthermore, physicochemical properties of HP0377 and its R86A variant have been determined. These results suggest that HP0377 may perform multiple functions as a reductase in H. pylori.
Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/química , Proteína Dissulfeto Redutase (Glutationa)/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Citocromos c/metabolismo , Helicobacter pylori/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Conformação Proteica , Proteína Dissulfeto Redutase (Glutationa)/metabolismoRESUMO
The intracellular pathogen Mycobacterium tuberculosis (Mtb) causes tuberculosis, and one of its secreted effector proteins, called enhanced intracellular survival (Eis) protein, enhances its survival in macrophages. Mtbâ Eis activates JNK-specific dual-specificity protein phosphatase 16 (DUSP16)/mitogen-activated protein kinase phosphatase-7 (MKP-7) through the acetylation on Lys55, thus inactivating JNK by dephosphorylation. Based on the recently reported crystal structure of Mtbâ Eis, a docking model for the binding of Mtbâ Eis to DUSP16/MKP-7 was generated. In the docking model, the substrate helix containing Lys55 of DUSP16/MKP-7 fits nicely into the active-site cleft of Mtbâ Eis; the twisted ß-sheet of Eis domain II embraces the substrate helix from one side. Most importantly, the side-chain of Lys55 is inserted toward acetyl-CoA and the resulting distance is 4.6 Å between the NZ atom of Lys55 and the carbonyl carbon of the acetyl group in acetyl-CoA. The binding of Mtbâ Eis and DUSP16/MKP-7 is maintained by strong electrostatic interactions. The active-site cleft of Mtbâ Eis has a negatively charged surface formed by Asp25, Glu138, Asp286, Glu395 and the terminal carboxylic group of Phe396. In contrast, DUSP16/MKP-7 contains five basic residues, Lys52, Lys55, Arg56, Arg57 and Lys62, which point toward the negatively charged surface of the active-site pocket of Mtbâ Eis. Thus, the current docking model suggests that the binding of DUSP16/MKP-7 to Mtbâ Eis should be established by charge complementarity in addition to a very favorable geometric arrangement. The suggested mode of binding requires the dissociation of the hexameric Mtbâ Eis into dimers or monomers. This study may be useful for future studies aiming to develop inhibitors of Mtbâ Eis as a new anti-tuberculosis drug candidate.
Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Mycobacterium tuberculosis/metabolismo , Humanos , Simulação de Dinâmica Molecular , FosforilaçãoRESUMO
One of the virulence factors produced by Streptococcus pyogenes is ß-NAD(+) glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38-451) and the full-length IFS (residues 1-161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPNct-IFS complex, which consists of the SPN C-terminal domain (SPNct; residues 193-451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPNct and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope.
Assuntos
Inibidores Enzimáticos/química , NAD+ Nucleosidase/química , Streptococcus pyogenes/enzimologia , Água/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , NAD+ Nucleosidase/antagonistas & inibidores , NAD+ Nucleosidase/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genéticaRESUMO
There has been considerable interest in virulence genes in the plasticity region of Helicobacter pylori, but little is known about many of these genes. JHP940, one of the virulence factors encoded by the plasticity region of H. pylori strain J99, is a proinflammatory protein that induces tumor necrosis factor-alpha and interleukin-8 secretion as well as enhanced translocation of NF-κB in cultured macrophages. Here we have characterized the structure and function of JHP940 to provide the framework for better understanding its role in inflammation by H. pylori. Our work demonstrates that JHP940 is the first example of a eukaryotic-type Ser/Thr kinase from H. pylori. We show that JHP940 is catalytically active as a protein kinase and translocates into cultured human cells. Furthermore, the kinase activity is indispensable for indirectly up-regulating phosphorylation of NF-κB p65 at Ser276. Our results, taken together, contribute significantly to understanding the molecular basis of the role of JHP940 in inflammation and subsequent pathogenesis caused by H. pylori. We propose to rename the jhp940 gene as ctkA (cell translocating kinase A).
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Helicobacter pylori/enzimologia , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Linhagem Celular Tumoral , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Modelos Moleculares , NF-kappa B/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Virulência/genéticaRESUMO
Ribosome-inactivating protein (RIP), a defence protein found in various plants, possesses different chain architectures and activation mechanisms. The RIP from barley (bRIP) is a type I RIP and has sequence features that are divergent from those of type I and type II RIPs from dicotyledonous plants and even the type III RIP from maize. This study presents the first crystal structure of an RIP from a cereal crop, barley, in free, AMP-bound and adenine-bound states. For phasing, a codon-optimized synthetic brip1 gene was used and a vector was constructed to overexpress soluble bRIP fusion proteins; such expression has been verified in a number of cases. The overall structure of bRIP shows folding similar to that observed in other RIPs but also shows significant differences in specific regions, particularly in a switch region that undergoes a structural transition between a 3(10)-helix and a loop depending on the liganded state. The switch region is in a position equivalent to that of a proteolytically susceptible and putative ribosome-binding site in type III RIPs. Thus, the bRIP structure confirms the detailed enzymatic mechanism of this N-glycosidase and reveals a novel activation mechanism for type I RIPs from cereal crops.
Assuntos
Hordeum/enzimologia , Proteínas Inativadoras de Ribossomos/química , Proteínas Inativadoras de Ribossomos/metabolismo , Sementes/enzimologia , Adenina/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Escherichia coli/genética , Hordeum/química , Hordeum/genética , Hordeum/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Inativadoras de Ribossomos/genética , Sementes/química , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Regulação para CimaRESUMO
Peptide deformylase (PDF) catalyzes the removal of the formyl group from the N-terminal methionine residue in newly synthesized polypeptides, which is an essential process in bacteria. Four new inhibitors of PDF that belong to two different classes, hydroxamate/pseudopeptide compounds [PMT387 (7a) and PMT497] and reverse-hydroxamate/nonpeptide compounds [PMT1039 (15e) and PMT1067], have been developed. These compounds inhibited the growth of several pathogens involved in respiratory-tract infections, such as Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae, and leading nosocomial pathogens such as Staphylococcus aureus and Klebsiella pneumoniae with a minimum inhibitory concentration (MIC) in the range 0.1-0.8â mgâ ml(-1). Interestingly, the reverse-hydroxamate/nonpeptide compounds showed a 250-fold higher antimicrobial activity towards S. aureus, although the four compounds showed similar K(i) values against S. aureus PDF enzymes, with K(i) values in the 11-85â nM range. To provide a structural basis for the discovery of additional PDF inhibitors, the crystal structures of S. aureus PDF in complex with the four inhibitors were determined at resolutions of 1.90-2.30â Å. The inhibitor-bound structures displayed distinct deviations depending on the inhibitor class. The distance between the Zn(2+) ion and the carbonyl O atom of the hydroxamate inhibitors (or the hydroxyl O atom of the reverse-hydroxamate inhibitors) appears to be correlated to S. aureus inhibition activity. The structural information reported in this study should aid in the discovery of new PDF inhibitors that can be used as novel antibacterial drugs.
Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Amidoidrolases/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Haemophilus influenzae/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Modelos Moleculares , Moraxella catarrhalis/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos da radiação , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/químicaRESUMO
Pyridoxal biosynthesis lyase (PdxS) is an important player in the biosynthesis of pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B(6). PLP is an important cofactor involved in the metabolic pathway of amine-containing natural products such as amino acids and amino sugars. PdxS catalyzes the condensation of ribulose 5-phosphate (Ru5P), glyceraldehyde 3-phosphate (G3P) and ammonia, while glutamine amidotransferase (PdxT) catalyzes the production of ammonia from glutamine. PdxS and PdxT form a complex, PLP synthase, and widely exist in eubacteria, archaea, fungi and plants. To facilitate further structural comparisons among PdxS proteins, the structural analysis of PdxS from Pyrococcus horikoshii encoded by the Ph1355 gene was initiated. PdxS from P. horikoshii was overexpressed in Escherichia coli and crystallized at 296 K using 2-methyl-2,4-pentanediol as a precipitant. Crystals of P. horikoshii PdxS diffracted to 2.61 Å resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 59.30, b = 178.56, c = 109.23 Å, ß = 102.97°. The asymmetric unit contained six monomers, with a corresponding V(M) of 2.54 Å(3) Da(-1) and a solvent content of 51.5% by volume.