Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nano Lett ; 24(29): 9058-9064, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007901

RESUMO

PdSe2 is a puckered transition metal dichalcogenide that has been reported to undergo a two-dimensional to three-dimensional structural transition under pressure. Here, we investigated the electronic and phononic evolution of PdSe2 under high pressure using pump-probe spectroscopy. We observed the electronic intraband and interband transitions occurring in the d orbitals of Pd, revealing the disappearance of the Jahn-Teller effect under high pressure. Furthermore, we found that the decay rates of interband recombination and intraband relaxation lifetimes change at 3 and 7 GPa, respectively. First-principles calculations suggest that the bandgap closure slows the decay rate of interband recombination after 3 GPa, while the saturation of phonon-phonon scattering is the main reason for the relatively constant intraband relaxation lifetime. Our work provides a novel perspective for understanding the evolution of the electron and modulation of the carrier dynamics by phonons under pressure.

2.
Small ; 19(24): e2207983, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36843250

RESUMO

As a new type of solution-processed nano-laser material, carbon dots (CDs) have shown considerable potential in optical communication, laser displays, micro/nano processing, and biomedicine. Reducing the laser threshold of the gain material is of considerable significance for further development of CDs' applications in the field of micro/nano lasers. A series of blue-emissive CDs (B-CDs) are synthesized by changing the molar ratios of the precursors (citric acid (CA): L-Cysteine (L-Cys)). B-CDs have a structure of carbon nanoparticles with their surface being modified with 5-oxo-3,5-dihydro-2Hthiazolo [3,2-a]pyridine-7-carboxylic acid (TPCA). The laser can only be generated when the molar ratio of the precursors is between 1:1 and 2:1. With an increase in this ratio, the laser threshold decreases from 341.6 to 165.5 mJ cm-2 . The decrease in the laser threshold is attributed to the increase in the radiation transition rate and centralized sp3 -related excited state levels, which are favorable for light amplification and population inversion. These results will be instructional for the reasonably design of CDs-based laser materials and prompt their potential use in practical photonics.

3.
Angew Chem Int Ed Engl ; 62(20): e202218568, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36924197

RESUMO

Carbon quantum dots (CQDs) feature bright and tunable photoluminescence, solution processability, and low toxicity, showing great potential in optoelectronics. However, the large-scale synthesis of CQDs with near-unity photoluminescence quantum yield (PLQY) has not been achieved so far. In this study, we perform radical-assisted synthesis of hexagon-shaped CQDs (H-CQDs) delivering near-unity PLQY (96 %). Experimental and theoretical analyses revealed that the large vertically oriented transition dipole moment of H-CQDs originating from high symmetry results in nearly 100 % PLQY. The H-CQDs also exhibited a high electron mobility of up to 0.07 cm2  V-1 s-1 . These properties enable the H-CQD-based light-emitting diodes with a high external quantum efficiency of 4.6 % and a record maximum brightness of over 11 000 cd m-2 . This study represents a significant advance that CQDs-based electroluminescent device can be utilized for potential display and lighting applications.

4.
Angew Chem Int Ed Engl ; 62(46): e202311912, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37794619

RESUMO

The excellent luminescence properties and structural dynamics driven by the stereoactivity of the lone pair in a variety of low-dimensional ns2 metal halides have attracted growing investigations for optoelectronic applications. However, the structural and photophysical aspects of the excited state associated with the lone pair expression are currently open questions. Herein, zero-dimensional Sn-based halides with static stereoactive 5 s2 lone pairs are selected as a model system to understand the correlations between the distinctive lone pair expression and the excited-state structural relaxation and charge carrier dynamics by continuous lattice manipulation. Lattice compression drives 5 s2 lone pair active switching and self-trapped exciton (STE) redistribution by suppressing excited-state structural deformation of the isolated SnBr4 2- units. Our results demonstrate that the static expression of the 5 s2 lone pair results in a red broadband triplet STE emission with a large Stokes shift, while its dynamic expression creates a sky-blue narrowband emission dominated by the radiative recombination of singlet STEs. Our findings and the photophysical mechanism proposed highlight the stereochemical effects of lone pair expression in controlling light emission properties and offer constructive guidelines for tuning the optoelectronic properties in diverse ns2 metal halides.

5.
Angew Chem Int Ed Engl ; 62(14): e202301573, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36738102

RESUMO

Pressure-induced emission (PIE) associated with self-trapping excitons (STEs) in low-dimensional halide perovskites has attracted great attention for better materials-by-design. Here, using 2D layered double perovskite (C6 H5 CH2 CH2 NH3 + )4 AgBiBr8 as a model system, we advance a fundamental physicochemical mechanism of the PIE from the perspective of carrier dynamics and excited-state behaviors of local lattice distortion. We observed a pressure-driven STE transformation from dark to bright states, corresponding a strong broadband Stokes-shifted emission. Further theoretical analysis demonstrated that the suppressed lattice distortion and enhanced electronic dimensionality in the excited-state play an important role in the formation of stabilized bright STEs, which could manipulate the self-trapping energy and lattice deformation energy to form an energy barrier between the potential energy curves of ground- and excited-state, and enhance the electron-hole orbital overlap, respectively.

6.
J Am Chem Soc ; 143(37): 15176-15184, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34506135

RESUMO

Maximizing the regeneration of singlet excitons remains a considerable challenge in deep-blue emission systems to obtain low-cost, high-efficiency fluorescent materials. However, the formation of the long-lifetime triplet excitons generally dominates the radiative process, making it greatly difficult to harvest deep-blue emission with high color purity because of the depression of singlet excitons. Here, a very bright deep-blue emission in double perovskite Cs2Na0.4Ag0.6InCl6 alloyed with Bi doping (CNAICB) was successfully achieved by pressure-driven reverse intersystem crossing (RISC), an abnormal photophysical process of energy transfer from the excited triplet state back to the singlet. Therein, the inherently broad emission of CNAICB was associated with the self-trapped excitons (STEs) at excited triplet states, whereas the radiative recombination of STEs populated in excited singlet states was responsible for the observed deep-blue emission. Moreover, the deep-blue emission corresponds to Commission Internationale de L'Eclairage (CIE) coordinates (0.16, 0.06) at 5.01 GPa, which meets the requirement of Rec. 2020 display standards. Likewise, pressure was introduced as an efficient tool to rule out the possibility of the recombination of free excitons and clarify the long-standing conventional dispute over the origin of the low-wavelength emission of Cs2AgInCl6. Our study not only demonstrates that pressure can be a robust means to boost the deep-blue emission but also provides deep insights into the structure-property relationship of lead-free CNAICB double perovskites.

7.
Luminescence ; 36(5): 1300-1305, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33856103

RESUMO

Fluorescence quenching of rhodamine 6G by graphene oxide (GO) was investigated using steady-state fluorescence spectroscopy and ultrafast time-resolved absorption spectroscopy. The steady-state fluorescence spectra showed that rhodamine 6G fluorescence was effectively quenched by titrating the GO to the rhodamine 6G solutions. For lower GO concentrations, transient dynamic curves followed two-exponential decay parameters. For higher GO concentrations, the dynamic curves could not be fitted well, and three-exponential decay parameters were appropriate. The results indicated that there was a new transition process (electron transfer) in the exited rhodamine 6G and GO solution.


Assuntos
Grafite , Rodaminas , Espectrometria de Fluorescência
8.
Angew Chem Int Ed Engl ; 60(25): 14091-14099, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33830583

RESUMO

Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band-gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high-emission Ch-CPDs remains challenging. Reported here for the first time is the synthesis of red- and multicolor-emitting Ch-CPDs using the common precursors L-/D-tryptophan and o-phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch-CPDs was between 31 % and 54 %. Supramolecular self-assembly provided multicolor-emitting Ch-CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum ) of 1×10-2 . Importantly, circularly polarized white-emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch-CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.

9.
Opt Express ; 27(15): 20980-20989, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510184

RESUMO

A Z-scan system using spectrometers as detectors is established to investigate nonlinear absorption and white light continuum separately, in which absorption coefficient that is coincident with previous work was obtained. After Z-scan experiments, spot photographs were captured to further study the spatial properties of filaments in CS2, and we obtained similar space between dual filaments with previous work. Using the experimental setup, we find that plasma generation is the main effect impacting the nonlinear absorption and refraction process, and this impact can be eliminated in the case of CS2. Therefore, effect of filamentation can be neglected for CS2. Though it is easy to generate filaments in CS2 at relatively low intensity, fitting the Z-scan curve with three-photon model at 800 nm for CS2 is reasonable. In addition, the thickness of sample can affect extracted absorption coefficient of CS2 by affecting the length of filamentation.

10.
Phys Chem Chem Phys ; 21(20): 10417-10422, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31066375

RESUMO

Lithium-ion batteries are an attractive power source for a wide variety of applications. Expanding the performance limit of current Li-ion batteries requires ion-solvent interaction, which governs the ion transport behavior of electrolytes, to be fully understood. We herein examine the coordination number of the Li+ ion in LiPF6-PC solutions using femtosecond vibrational spectroscopy. Surprisingly, we found that the coordination number of PC in the first solvation shell of Li+ decreases from 4 to 2 as the salt concentration increases. At dilute salt concentrations, the Li(PC)4+ complex with a tetrahedral geometry is dominant, while at high salt concentrations, the presence of anions in the first solvation shell modifies the solvation structure, leading only 2 PC molecules to coordinate to Li+ directly. The variety of the solvation structure provides a rational explanation for the ionic conductivity changing as the salt concentration increases.

11.
Angew Chem Int Ed Engl ; 56(22): 6187-6191, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28378520

RESUMO

Piezochromic materials, which show color changes resulting from mechanical grinding or external pressure, can be used as mechanosensors, indicators of mechano-history, security papers, optoelectronic devices, and data storage systems. A class of piezochromic materials with unprecedented two-photon absorptive and yellow emissive carbon dots (CDs) was developed for the first time. Applied pressure from 0-22.84 GPa caused a noticeable color change in the luminescence of yellow emissive CDs, shifting from yellow (557 nm) to blue-green (491 nm). Moreover, first-principles calculations support transformation of the sp2 domains into sp3 -hybridized domains under high pressure. The structured CDs generated were captured by quenching the high-pressure phase to ambient conditions, thus greatly increasing the choice of materials available for a variety of applications.

13.
Phys Chem Chem Phys ; 18(5): 3838-45, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26763126

RESUMO

Ultrafast carrier relaxation dynamics in fluorescent carbon nanodots is investigated by femtosecond transient absorption spectra at different pH environments so as to understand the mechanism of fluorescence for the first time. Utilizing multi-wavelength global analysis to fit the measured signal via a sequential model, four different relaxation channels are found, which are attributed to electron-electron scattering and surface state trapping, optical phonon scattering, acoustic phonon scattering and electron-hole recombination respectively. The results reveal that the surface states are mainly composed of different oxygen-containing functional groups (epoxy, carbonyl and carboxyl) and carbon atoms on the edge of the carbon backbone and can effectively trap a large number of photo-excited electrons. The deprotonation of carboxyl groups at high pH will change the distribution of π electron cloud density between the carbon backbone and surface states and consequently, compared with the excited electrons in the acidic and neutral environments, those in the alkaline environment can be more easily trapped by the surface within 1 ps, thereby giving rise to stronger fluorescence emission.

14.
Opt Express ; 23(19): 24648-56, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406666

RESUMO

In femtosecond double-pulse laser-induced breakdown spectroscopy, collinear double-pulse performance is investigated experimentally using various laser wavelength combinations of 800 nm and 400 nm Ti: sapphire lasers. The induced plasma emission line collected by BK7 lenses is the Si (I) at 390.55 nm. The double-pulse time separation ranges from -300 ps to 300 ps. The line intensity is dependent on the time separation of the dual-wavelength femtosecond double-pulse, and its behavior is unlike that of single-wavelength femtosecond double-pulses. Optical emission intensity can be enhanced by selecting appropriate time separation between sub-pulses. This result is particularly advantageous in the context of femtosecond laser-induced breakdown spectroscopy.

15.
J Phys Chem Lett ; 15(6): 1623-1635, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306470

RESUMO

Metal halide perovskites have garnered significant attention in the scientific community for their promising applications in optoelectronic devices. The application of pressure engineering, a viable technique, has played a crucial role in substantially improving the optoelectronic characteristics of perovskites. Despite notable progress in understanding ground-state structural changes under high pressure, a comprehensive exploration of excited-state dynamics influencing luminescence remains incomplete. This Perspective delves into recent advances in time-resolved dynamics studies of photoexcited metal halide perovskites under high pressure. With a focus on the intricate interplay between structural alterations and electronic properties, we investigate electron-phonon interactions, carrier transport mechanisms, and the influential roles of self-trapped excitons (STEs) and coherent phonons in luminescence. However, significant challenges persist, notably the need for more advanced measurement techniques and a deeper understanding of the phenomena induced by high pressure in perovskites.

16.
J Phys Chem Lett ; 15(32): 8142-8150, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092613

RESUMO

Quasi-two-dimensional (quasi-2D) perovskites hold significant potential for diverse design strategies due to their tunable structures, exceptional optical properties, and environmental stability. Due to the complexity of the structure and carrier dynamics, characterization methods such as photoluminescence and absorption spectroscopy can observe but cannot precisely distinguish or identify the phase distribution within quasi-2D perovskite films or correlate phases with carrier dynamics. In this study, we used pressure to modulate the intralayer and interlayer structures of (PEA)2Csn-1PbnBr3n+1 quasi-2D perovskite films, investigating charge carrier dynamics. Steady-state spectroscopy revealed phase transitions at 1.62, 3, and 8 GPa, with free excitons transforming into self-trapped excitons after 8 GPa. Transient absorption spectroscopy elucidated the structural evolution, energy transfer, and pressure-induced transition mechanisms. The results demonstrate that combining pressure and spectroscopy enables the precise identification of phase distribution and pressure response ranges and reveals photophysical mechanisms, providing new insights for optimizing optoelectronic materials.

17.
Adv Mater ; 35(5): e2207265, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408928

RESUMO

Chiral carbon dots (Ch-CDs) trigger the full-color circularly polarized luminescence (CPL) of CsPbX3  nanocrystals (NCs). Ch-CDs-CsPbBr3  NCs are successfully synthesized via simple ligand-assisted coprecipitation of Ch-CDs and metal halides precursors at room temperature. Ch-CDs-CsPbBr3  retains emission characteristics of the CsPbBr3  with near-unity photoluminescence quantum yield, and meanwhile has special CPL, with a maximum luminescence dissymmetric factor (glum ) of -3.1 × 10-3 , which is induced by Ch-CDs. This is the first report of chiral perovskite which is induced by other chiral nanomaterials. By anion exchange, CPL can cover almost the entire visible light band. Surprisingly, the chiral signal of Ch-CDs-CsPbBr3  NCs is in-versed under excitation state, which can be induced by the charge transfers between Ch-CDs and perovskite NCs. The combination of perovskites and Ch-CDs pave away for the design of new chiral perovskite on multifunctional applications.

18.
J Colloid Interface Sci ; 634: 221-230, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535160

RESUMO

A steric hindrance strategy was used to prepare intramolecular hydrogen bond-controlled thermosensitive fluorescent carbon dots (CDs) via the solvothermal treatment of o-phenylenediamine respectively with three dihydroxybenzene isomers. The CDs obtained from different isomers have very similar morphology, surfaces, and photophysical properties but exhibited different thermal sensitivities. Meanwhile, the orange-emitting CDs (p-CDs) obtained from o-phenylenediamine and p-hydroquinone exhibited an optimal thermal sensitivity of 1.1%/°C. Comprehensive experimental characterizations and theoretical calculations revealed that even a small difference in substituent locations in the phenyl ring of the precursors can considerably affect the formation of intramolecular hydrogen bonds and that the CDs with strong intramolecular hydrogen bonds exhibited poor thermosensitivity. The p-CDs were incorporated with reference CDs (B-CDs) that exhibited heating-quenching blue emission through electrostatic self-assembly to construct a dual-emission probe (p-CDs/B-CDs), which exhibited a thermal sensitivity of 2.0%/°C. Test strips based on the p-CDs/B-CDs were prepared to measure temperature fluctuations based on sensitive and instant fluorescence color evolution. Further, this fluorescent colorimetry was successfully applied to a test strip-integrated wearable wristband to measure the body temperature. This study establishes an inherent relationship between precursors and the resulting intramolecular hydrogen bonds for precisely tuning the thermal sensitivity of CDs. It also offers a visual quantitative strategy for the early warning of abnormal body temperatures.


Assuntos
Temperatura Corporal , Pontos Quânticos , Ligação de Hidrogênio , Carbono/química , Pontos Quânticos/química , Corantes Fluorescentes/química
19.
Adv Mater ; 35(31): e2302536, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37144515

RESUMO

As a new solution-processable laser material, carbon dots (CDs) offer advantages of non-toxicity, low-cost, and high-stability, which are conducive to the sustainable development of miniaturized lasers. Full-color CDs (FC-CDs) with bright-blue, green, yellow, red, deep-red, and near-infrared (NIR) fluorescence are prepared. Their photoluminescence emission ranges from 431 to 714 nm. The FC-CDs show narrow full widths at half maximum in the range of 44-76 nm, with concurrent high radiative transition rates (KR ) of 0.54-1.74 × 108  s-1 ; their performance is comparable to that of organic laser dyes, indicating their good gain potential for lasers. Laser pumping of the FC-CDs gives laser outputs at 467.3, 533.5, 577.4, 616.3, 653.5, and 705.1 nm, spanning from blue to NIR region, and covering 140% of the NTSC color gamut. The FC-CDs show high Q-factors (2000-5500), appreciable gain coefficients (9-21.5 cm-1 ), and better stability (≈100%@4-7 h) than commercial laser dyes. These excellent properties make them suitable for high-quality, colorful, speckle-free laser imaging and dynamic holographic display. The findings will be helpful in promoting the practical applications and development of solution-processable CD-based lasers.

20.
J Phys Chem Lett ; 14(30): 6880-6887, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37493548

RESUMO

Remote optical sensing with nondestructive, fast, and accurate detection capabilities is a powerful noncontact method widely used in natural, industrial, and biological fields. In this work, Cs2NaErCl6 double perovskite was synthesized via a hydrothermal method. The pressure-dependent photoluminescence (PL) lifetime of Er3+ in the range of 0-20 GPa was investigated, demonstrating its potential for pressure monitoring. The high-pressure relative sensitivity (SR) is ∼18.45% GPa-1. Temperature measurements were conducted using the fluorescence intensity ratio (FIR) of the thermal couple energy level (TCEL) and the nonthermal couple energy level (NTCEL) of Er3+ across a temperature range of 100-660 K, with a maximum SR of 5.36% K-1. By combining MXene with Cs2NaErCl6 and recording the FIR of Cs2NaErCl6 under 1550 nm excitation, the photothermal conversion temperature of MXene can be accurately determined. These findings highlight the potential of Cs2NaErCl6 for remote pressure and temperature sensing, particularly in the biomedical field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA