Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Soft Matter ; 18(3): 662-674, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34935829

RESUMO

Even though the global wound care market size was valued at USD 19.83 billion in 2020, it is still a challenge to develop a hydrogel-based wound dressing with a good mechanical property, adhesiveness and antibacterial property. This study established and validated a mussel-inspired adhesive hydrogel wound dressing with antibacterial activity by dispersing tetracycline hydrochloride into hydrogel based polydopamine, gelatin and polyacrylamide. A tough hydrogel with a fracture stress of 0.42 MPa was prepared by changing the contents of the gelatin and polyacrylamide. With the addition of polydopamine and tetracycline hydrochloride, the hydrogel was endowed with an adhesive property (with a tissue adhesive strength of 4.13 kPa) and antibacterial activity against both Escherichia coli and Staphylococcus aureus. Finally, a rat full-thickness skin defect wound model was used to evaluate the performance of the hydrogels in wound repair. The hydrogel group showed a significantly reduced wound area (95.72%) compared with the blank group (86.34%) on day 14. The hydrogel promoted the collagen deposition, weakened the inflammatory response and enhanced wound healing. Therefore, the hydrogel with multifunctional properties is a promising candidate for complete skin regeneration.


Assuntos
Gelatina , Tetraciclina , Resinas Acrílicas , Adesivos , Animais , Antibacterianos/farmacologia , Bandagens , Hidrogéis , Ratos , Cicatrização
2.
Macromol Rapid Commun ; 43(11): e2200010, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35393731

RESUMO

With the development of reversible deactivated radical polymerization techniques, polymerization-induced self-assembly (PISA) is emerging as a facile method to prepare block copolymer nanoparticles in situ with high concentrations, providing wide potential applications in different fields, including nanomedicine, coatings, nanomanufacture, and Pickering emulsions. Polymeric emulsifiers synthesized by PISA have many advantages comparing with conventional nanoparticle emulsifiers. The morphologies, size, and amphiphilicity can be readily regulated via the synthetic process, post-modification, and external stimuli. By introducing stimulus responsiveness into PISA nanoparticles, Pickering emulsions stabilized with these nanoparticles can be endowed with "smart" behaviors. The emulsions can be regulated in reversible emulsification and demulsification. In this review, the authors focus on recent progress on Pickering emulsions stabilized by PISA nanoparticles with stimuli-responsiveness. The factors affecting the stability of emulsions during emulsification and demulsification are discussed in details. Furthermore, some viewpoints for preparing stimuli-responsive emulsions and their applications in antibacterial agents, diphase reaction platforms, and multi-emulsions are discussed as well. Finally, the future developments and applications of stimuli-responsive Pickering emulsions stabilized by PISA nanoparticles are highlighted.


Assuntos
Nanopartículas , Emulsões , Polimerização , Polímeros
3.
Macromol Rapid Commun ; 42(6): e2000496, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33200484

RESUMO

Hantzsch reaction is one of the typical multicomponent reactions (MCRs), and it is employed herein to endow cellulosic materials with fluorescent properties. For example, acetoacetyl (ACAC)-bearing cotton fabric prepared via transesterification with tert-butyl acetoacetate is subjected to an aqueous Hantzsch reaction with formaldehyde and ammonium acetate at ambient temperature. A strong fluorescent emission around 460 nm is achieved within 10 min. XPS, fluorescent spectroscopy, and elemental analysis are used to confirm the presence of 1,4-dihydropyridine (DHP) rings on the surface of the fabric. TGA, SEM, XRD, and mechanical testing results show that the modification process has minimum impact on intrinsic properties of the fabric. The strategy is also shown to be generally applicable to various forms of cellulosic materials and different aldehydes. This fast and simple approach enriches the application of MCR in modification of cellulose and cellulose derivatives.


Assuntos
Aldeídos , Celulose , Corantes , Água
4.
Soft Matter ; 15(37): 7404-7411, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31465077

RESUMO

Herein, a PVA (polyvinyl alcohol)-based multi-responsive hydrogel was prepared by introducing the dynamic and reversible supramolecular complexation between polyvinyl alcohol acetoacetate (PVAA) and Fe3+ ions within 20 s at room temperature. PVAA-Fe hydrogels could be achieved by the simple mixing process of a PVAA aqueous solution with FeCl3 aqueous solution. The soluble PVAA was synthesized by the reaction of PVA with tert-butyl acetoacetate (t-BAA) via transesterification in dimethyl sulfoxide (DMSO). The chemical structure of PVAA was systematically characterized by FT-IR and 1H NMR spectroscopy. The resulting hydrogel showed excellent self-healing behavior without other external stimuli. It was also demonstrated that the PVAA-Fe hydrogel exhibited multi-responsive properties, such as responsiveness to pH, redox, light irradiation and temperature. In addition, the presence of Fe3+ ions and Cl- ions in the gel imparted the PVAA-Fe hydrogel with favorable conductivity. Therefore, the strategy for the facile preparation of the hydrogel in this work could provide a benign and versatile method for achieving multi-functional soft materials for various applications such as smart devices, logic gates, and sensors.

5.
Ecotoxicol Environ Saf ; 168: 35-44, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30384165

RESUMO

The LaFeO3 perovskite oxide decorated active carbon fibers (LFO-ACFs) based on cotton fabric waste were successfully synthesized through sol-gel loading and thermal treatment. LaFeO3 perovskite and cotton fabric waste were combined to an eco-friendly and cheap adsorbent, which could reuse the leftover materials of textile industry and realize their functional modification. The structural, morphology/microstructure and functional groups were investigated through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared spectroscopy (FTIR), respectively. The XRD pattern suggested the cotton fabric matrix didn't influence the structure of LaFeO3 perovskite oxide. In SEM studies, LFO-ACFs still maintained fibrous shape of the raw cotton fibers, and the EDX analysis showed that the main elements of the prepared LFO-ACFs were La, Fe, O and C. The synthesized LFO-ACF was employed for adsorption of cational dye of Rhodamine B (RhB), and the effects of adsorption parameters, i.e. pH, contact time, solution temperature and initial concentration of dye, on adsorption behavior were investigated. Results suggested the adsorption performance of LFO-ACF for RhB was nearly not affected by solution pH and its maximum adsorption capacity fitted by the Langmuir isothermal model could attain 182.6 mg/g at 293 K. The adsorption kinetics followed the pseudo-second-order equation and the regeneration of LFO-ACF could be well realized through an easy pyrolysis method.


Assuntos
Compostos de Cálcio/síntese química , Óxidos/síntese química , Rodaminas/química , Adsorção , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Indústria Têxtil , Titânio , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/química , Difração de Raios X
6.
Macromol Rapid Commun ; 37(23): 1939-1944, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27775202

RESUMO

Highly swellable, dual-responsive hydrogels, consisting of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) and redox-responsive poly(ferrocenylsilane) (PFS) based poly(ionic liquid)s (PILs) are formed by photo-polymerization. PFS chains bearing cross-linkable vinylimidazolium (VIm) side groups are copolymerized with NIPAM in aqueous solutions under ultraviolet light (λ = 365 nm) in the presence of a photoinitiator. The PFS-PILs serve as a macro-cross-linker and also provide redox responsiveness. The swelling ratio, morphology, and lower critical solution temperature (LCST) of the hydrogels are studied as a function of the PNIPAM/PFS ratio. The value of the LCST is dependent on the choice of the counterion of the PIL and the PNIPAM/PFS ratio. The hydrogel is employed as a reducing environment for the in situ fabrication of gold nanoparticles (AuNPs), forming AuNP-hydrogel composites. The localized surface plasmon resonance peak of the as-synthesized Au nanoparticles inside the hydrogel could be tuned by altering the temperature.


Assuntos
Resinas Acrílicas/química , Compostos Ferrosos/química , Hidrogéis/química , Líquidos Iônicos/química , Silanos/química , Resinas Acrílicas/síntese química , Compostos Ferrosos/síntese química , Ouro/química , Líquidos Iônicos/síntese química , Nanopartículas Metálicas/química , Estrutura Molecular , Oxirredução , Silanos/síntese química , Ressonância de Plasmônio de Superfície , Temperatura
7.
J Am Chem Soc ; 136(22): 7865-8, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24834958

RESUMO

Robust, dense, redox active organometallic poly(ferrocenylsilane) (PFS) grafted films were formed within 5 min by cathodic reduction of Au substrates, immersed in a solution of imidazolium-functionalized PFS chains in the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate. The electrografted polymer films were employed as an electrochemical sensor, exhibiting high sensitivity, stability, and reproducibility.

8.
Soft Matter ; 10(17): 3134-42, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24695793

RESUMO

Using a combination of ellipsometry and friction force microscopy, we study the reversible swelling, collapse and variation in friction properties of covalently bound poly(N-isopropylacrylamide) (PNIPAM) layers on silicon with different grafting densities in response to exposure to good solvents and co-nonsolvent mixtures. Changes in the thickness and segment density distribution of grafted films are investigated by in situ ellipsometry. Based on quantitative modelling of the ellipsometry spectra, we postulate a structural model, which assumes that collapse takes place in the contacting layer between the brush and the co-nonsolvent and the top-collapsed brushes remain hydrated in the film interior. Using the structural model derived from ellipsometry spectra, we analyse the AFM based friction force microscopy data, which were obtained by silica colloidal probes. Results show a large increase of the friction coefficient of PNIPAM grafts when the grafts swollen by water are brought in contact with co-nonsolvents. For instance, the value of the friction coefficient for a medium density brush in water is four times lower than the value observed in a water-methanol (50% v/v) mixture. This increase of friction is accompanied by an increase in adherence between the PNIPAM chains and the silica colloidal probes, and is a result of chain collapse in the graft when contacted by a co-nonsolvent mixture in agreement with the model postulated on the basis of ellipsometric characterisation. The kinetic behaviour of the collapse is assessed by measuring the temporal variation of friction in situ as a function of elapsed time following contact with the co-nonsolvent as a function of graft density. In conclusion, the effect of co-nonsolvency influenced both the thickness of the PNIPAM brushes and the tribological behavior of the brush surfaces.

9.
Angew Chem Int Ed Engl ; 53(50): 13789-93, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25345763

RESUMO

Redox-responsive porous membranes can be readily formed by electrostatic complexation between redox active poly(ferrocenylsilane) PFS-based poly(ionic liquid)s and organic acids. Redox-induced changes on this membrane demonstrated reversible switching between more open and more closed porous structures. By taking advantage of the structure changes in the oxidized and reduced states, the porous membrane exhibits reversible permeability control and shows great potential in gated filtration, catalysis, and controlled release.

10.
ACS Appl Mater Interfaces ; 16(3): 4089-4098, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268145

RESUMO

Flexible electrothermal composite phase change materials (PCMs) are promising candidates for portable thermotherapy. However, a great challenge remains to achieve high PCM loading while maintaining reasonable flexibility. Herein, the polypyrrole-decorated melamine foam (PPy@MF) was fabricated and thereafter applied to confine binary PCM mixtures composed of a high-enthalpy long-chain polyethylene glycol (PEG4000) and its short-chain homologue (PEG200) to make the novel PPy@MF-PEG4000+200 composite PCM. At a high loading of up to 74.1% PEG4000 and a high latent heat energy storage density of 150.1 J/g, the composite PCM remained flexible at temperature (-20 °C) far below its phase transition point thanks to the plasticine effect of PEG200. The composite also demonstrated good Joule heating performance, providing fast heating from 28 to 70 °C at low applied voltages (4.5-6.0 V). The energy could be stored efficiently and released to maintain the composites at the proper temperature. The electrothermal performance of the composite remained undisturbed during curved or repeated bending, showing good potential to be used for personal thermal management and thermotherapy.

11.
Langmuir ; 29(24): 7257-65, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23311998

RESUMO

Poly(ferrocenyl(3-bromopropyl)methylsilane) and poly(ethylene imine) are employed in a layer-by-layer deposition process to form covalently connected, redox-active multilayer thin films by means of an amine alkylation reaction. The stepwise buildup of these multilayers on silicon, ITO, and quartz substrates was monitored by UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), static contact angle measurements, surface plasmon resonance (SPR), atomic force microscopy, ellipsometry, and cyclic voltammetry, which provide evidence for a linear increase in multilayer thickness with the number of deposited bilayers. Upon oxidation and reduction, these covalently interconnected layers do not disassemble, in contrast to poly(ferrocenylsilane) (PFS) layers featuring similar backbone structures that are held together by electrostatic forces. The PFS/PEI multilayers are effective for the electrochemical sensing of ascorbic acid and hydrogen peroxide and show improved sensing performance at higher bilayer numbers. These covalently linked layers are readily derivatized further and can therefore be regarded as a versatile platform for creating robust, tailorable, redox-active interfaces with applications in sensing and biofuel cells.


Assuntos
Polímeros/química , Microscopia de Força Atômica , Oxirredução , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
12.
Carbohydr Polym ; 312: 120826, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059553

RESUMO

The abuse of non-renewable fossil resources and the resulting plastic pollution have posed a great burden on the environment. Fortunately, renewable bio-macromolecules have shown great potential to replace synthetic plastics in fields ranging from biomedical applications, and energy storage to flexible electronics. However, the potential of recalcitrant polysaccharides, such as chitin, in the above-mentioned fields have not been fully exploited because of its poor processability, which is ultimately due to the lack of suitable, economical, and environmentally friendly solvent for it. Herein, we demonstrate an efficient and stable strategy for the fabrication of high-strength chitin films from concentrated chitin solutions in cryogenic 85 wt% aqueous phosphoric acid (aq. H3PO4). The regeneration conditions, including the nature of the coagulation bath and its temperature are important variables affecting the reassembly of chitin molecules and hence the structure and micromorphology of the films. Uniaxial orientation of the chitin molecules by applying tension to the RCh hydrogels further endows the films with enhanced mechanical properties of up to 235 MPa and 6.7 GPa in tensile strength and Young's modulus, respectively.

13.
Environ Sci Pollut Res Int ; 30(12): 35214-35222, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527560

RESUMO

Catalytic degradation is a promising and ideal technology in environmental remediation. Among them, catalytic oxidation and photocatalysis respectively based on catalysts and photocatalysts both trigger broad interests because of their high removal activity. However, the reusability of the powder catalysts still faces substantial challenges. Here, a simple strategy is proposed to load Fe-BTC catalyst on aramid fabrics (AF) to construct Fe-BTC MOF @ aramid fabric (Fe-BTC@AF) composite materials with layer-by-layer in situ self-assembly methods. The experimental results illustrated that 98% isoproturon could be removed by Fe-BTC@AF20 with oxidant H2O2, while the single Fe-BTC@AF20 could photo-degrade 99% isoproturon within 7 h. Meanwhile, it could sustain a high degradation rate of more than 80%, even if it had gone through 5 degradation cycles. Thus, the Fe-BTC@AF composite has a significant advantage in the recycling ability for degradation of isoproturon, which will have potential applications in the efficient removal of organic contaminants in water.


Assuntos
Peróxido de Hidrogênio , Têxteis , Compostos de Fenilureia , Oxirredução , Catálise
14.
J Mater Chem B ; 11(7): 1486-1494, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36655870

RESUMO

Silk fibroin (SF) has received interest in tissue engineering owing to its biocompatibility, biodegradability, and favorable mechanical properties. However, the complex preparation, brittleness, and lack of pores in the structure of the silk fibroin film limit its application. Herein, we show that facile dissolution of SF in aqueous phosphoric acid followed by regeneration in aqueous ammonium sulfate ((NH4)2SO4) could afford highly stretchable films with nano-pores formed in the nonsolvent-induced phase separation process. The named phase separation, which determines the morphology and mechanical properties of the regeneration silk fibroin (RSF) films, is highly dependent on the (NH4)2SO4 concentration as well as the initial concentration of the SF solution. Therefore, the RSF films exhibit a tunable pore size ranging from 230 to 510 nm and excellent stretchability with tensile strain up to 143 ± 16%. Most interestingly, the RSF films were shown to support the proliferation of human skin fibroblasts in vitro as well as speed up full-thickness skin wound healing in a rat model. This work establishes an easy and feasible method to access porous RSF membranes that can be used for wound dressing in clinical settings.


Assuntos
Fibroínas , Ratos , Humanos , Animais , Fibroínas/química , Porosidade , Cicatrização , Regeneração , Engenharia Tecidual
15.
Int J Biol Macromol ; 224: 1382-1394, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306896

RESUMO

The fabric-based wound dressings are hard to maintain a moist environment for wound healing while the hemostatic property and gas permeability of some hydrogel-based wound dressings are not ideal. This study first put forward a strategy of checkerboard-pattern wound dressing: 1) preparing the base fabric with hemostatic property, 2) printing multifunctional hydrogels onto one side of the base fabric to form checkerboard patterns, 3) modifying the other side of the base fabric to be hydrophobic. In this manner, the composite dressing not only maintained the advantages of hydrogels, but also inherited good mechanical property, hemostatic property, and gas permeability from the base fabric. Here, the cotton fabric was carboxymethylated to be MCF. To obtain multifunctional hydrogel, sodium carboxymethylcellulose was oxidated to introduce aldehyde groups to form Schiff base with amino groups in gelatin, besides, dopamine and Ag nanoparticles were introduced to endow the hydrogel with antioxidant property and antibacterial activity. The multifunctional hydrogel was printed onto one side of MCF, subsequently, the deposition of paraffin made the other side of this dressing become hydrophobic. The good performance of the obtained dressing in hemostatic process and wound healing demonstrated its potential in the field of wound treatment.


Assuntos
Hemostáticos , Nanopartículas Metálicas , Hidrogéis/química , Gelatina/química , Carboximetilcelulose Sódica/química , Prata , Hemostasia , Antibacterianos/química , Sódio
16.
Nanoscale ; 15(21): 9403-9412, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158132

RESUMO

Silk fibroin (SF)-based materials are characterized by their outstanding biocompatibility and biodegradability and are considered as the most promising candidates for next-generation flexible electronics. In order to generate such devices, SF can be mixed with carbon nanotubes (CNTs) which feature excellent mechanical, electrical, and thermal properties. However, obtaining regenerated SF with homogeneous dispersion of CNTs in a sustainable manner represents a challenging task, mainly due to the difficulty in overcoming van der Waals forces and strong π-π interactions that hold together the CNT structure. In this study, a one-pot strategy for fabricating SF/CNT films is proposed by designing SF as a modifier of CNTs through non-covalent interactions with the assistance of aqueous phosphoric acid solution. Glycerol (GL) was introduced, endowing the SF/GL/CNT composite film with excellent flexibility and stretchability. The sustainable strategy greatly simplifies the preparation process, avoiding dialysis of SF and the use of artificial dispersants. The as-fabricated SF/GL/CNT films showed an excellent mechanical strength of 1.20 MPa and high sensitivity with a gauge factor of up to 13.7 toward tensile deformation. The composite films had a sensitive monitoring capability for small strains with detection limits as low as 1% and can be assembled into versatile sensors to detect human movement. Simultaneously, the composite films showed a superb thermosensitive capacity (1.64% °C-1), which satisfied the requirement of real-time and continuous skin temperature monitoring. We anticipate that the presented one-pot strategy and the prepared composite films could open a new avenue for forthcoming technologies for electronic skins, personal health monitoring, and wearable electronics.

17.
J Am Chem Soc ; 134(9): 4023-5, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22353019

RESUMO

The synthesis of a new class of cross-linkable redox-responsive poly(ferrocenylsilane)-based poly(ionic liquid)s (PFS-PILs) is reported. PFS-PILs self-cross-link at low concentrations into nanogels or form macroscopic hydrogel networks at higher concentrations. PFS-PILs proved to be efficient dispersants in the microemulsion polymerization of methyl methacrylate, producing stable PFS-poly(methyl methacrylate) latex suspensions.


Assuntos
Compostos Ferrosos/química , Líquidos Iônicos/química , Polimetil Metacrilato/química , Silanos/química , Compostos Ferrosos/síntese química , Líquidos Iônicos/síntese química , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Polimetil Metacrilato/síntese química , Silanos/síntese química , Propriedades de Superfície
18.
Polymers (Basel) ; 14(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683971

RESUMO

Regenerated lignocellulose nanofibrils (RLCNFs) have recently piqued the interest of researchers due to their widespread availability and ease of extraction. After dewaxing, we treated sisal fiber with alkali, followed by heating and agitation, to obtain RLCNFs, which were then vacuum oven-dried. We used a variety of characterization techniques, including XRD, SEM, and FT-IR, to assess the effects of the alkali treatment on the sisal fiber. Various characterizations demonstrate that lignocellulose fibrils have been successfully regenerated and contaminants have been removed. In addition, employing the RLCNFs as a stabilizer, stable Pickering emulsions were created. The effects of RLCNF concentration in the aqueous phase and water-to-oil volume ratio on stability were studied. The RLCNFs that have been produced show promise as a stabilizer in Pickering emulsions.

19.
Carbohydr Polym ; 288: 119409, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35450659

RESUMO

The effective integration of multiple thermal functions into one material is highly attractive in personal thermal management, taking the complex application environment into consideration. Herein, a multifunctional Janus cellulosic composite encompassing superior electrical heating, energy storage, thermal insulation, and infrared camouflage performance was firstly developed by integrating Janus cellulose nanofibers (CNF) aerogel, polypyrrole (PPy), and polyethylene glycol (PEG). In practice, the active heating-thermal regulation layer (PPy@CNFphilic-PEG) of multifunctional Janus cellulosic composite is faced inward to provide heating on-demand through the joint action of the electrically conductive PPy and thermally regulative PEG. The outward-facing hydrophobic aerogel layer (CNFphobic) serves as the thermal insulator, which simultaneously enables infrared camouflage by reducing heat loss to the environment via infrared radiation. This work presents an effective and facile strategy toward multifunctional Janus materials for efficient personal thermal management, showing great promise for potential applications, such as thermal comfort, infrared camouflage, and security protection.


Assuntos
Nanofibras , Polímeros , Celulose/química , Condutividade Elétrica , Nanofibras/química , Polímeros/química , Pirróis/química
20.
Int J Biol Macromol ; 209(Pt B): 1703-1709, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487382

RESUMO

The enzymatic degradation of poly(lactic acid) was catalyzed with Proteinase K and the effect of various factors on the rate of degradation was analyzed quantitatively with the help of appropriate kinetic models. The Michaelis-Menten model was modified for the purpose by considering the heterogeneous nature of the reaction and the denaturation of the enzyme. The results proved that Proteinase K degrades the polymer very efficiently. The rate of degradation increases considerably up to 0.1 mg/ml enzyme concentration, but remains constant at larger values. Temperature has an optimum at around 50 °C that is somewhat higher than the 37 °C extensively used in the literature as the most advantageous temperature. If degradation occurs in the same medium throughout the process, the formation of lactic acid results in the rapid decrease of pH and finally in the denaturation of the enzyme. The dropping of pH below 5 slows down and finally stops degradation completely. The daily change of the medium results in degradation with a constant rate and the entire amount of the polymer can be decomposed mainly into monomer or smaller oligomer fragments. Degradation rate decreases slightly with increasing molecular weight and increasing d-lactide content. The use of appropriate kinetic models allows quantitative analysis and the prediction of the rate of enzymatic degradation of PLA.


Assuntos
Poliésteres , Polímeros , Endopeptidase K/química , Ácido Láctico/química , Poliésteres/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA