Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 26(6): 1019-1028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992876

RESUMO

BACKGROUND: The aim of the study was to investigate the dosimetric feasibility of using optically stimulated luminescence dosimeters (OSLD) and an electronic portal imaging device (EPID) for central axis (CA X) and off-axis (OAX) dosimetric leaf gap (DLG) measurement. MATERIALS AND METHODS: The Clinac 2100C/D linear accelerator equipped with Millennium-120 multileaf collimator (MLC) and EPID was utilized for this study. The DLG values at CA X and ± 1 cm OAX (1 cm superior and inferior to the CA X position, respectively along the plane perpendicular to MLC motion) were measured using OSLD (DLGOSLD) and validated using ionization chamber dosimetry (DLGICD). The two-dimensional DLG map (2D DLGEPID) was derived from the portal images of the DLG plan using a custom-developed software application that incorporated sliding aperture-specific correction factors. RESULTS: DLGOSLD and DLGICD, though measured with diverse setup in different media, showed similar variation both at CA X and ± 1 cm OAX positions. The corresponding DLGEPID values derived using aperture specific corrections were found to be in agreement with DLGOSLD and DLGICD. The 2D DLGEPID map provides insight into the varying patterns of the DLG with respect to each leaf pair at any position across the exposed field. CONCLUSIONS: Commensurate results of DLGOSLD with DLGICD values have proven the efficacy of OSLD as an appropriate dosimeter for DLG measurement. The 2D DLGEP ID map opens a potential pathway to accurately model the rounded-leaf end transmission with discrete leaf-specific DLG values for commissioning of a modern treatment planning system.

2.
Rep Pract Oncol Radiother ; 25(2): 282-292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140087

RESUMO

BACKGROUND AND AIM: Computational complexities encountered in craniospinal irradiation (CSI) have been widely investigated with different planning strategies. However, localization of the entire craniospinal axis (CSA) and evaluation of adaptive treatment plans have traditionally been ignored in CSI treatment. In this study, a new strategy for CSI with comprehensive CSA localization and adaptive plan evaluation has been demonstrated using cone beam CT with extended longitudinal field-of-view (CBCTeLFOV). MATERIALS AND METHODS: Multi-scan CBCT images were acquired with fixed longitudinal table translations (with 1 cm cone-beam overlap) and then fused into a single DICOM-set using the custom software coded in MatLab™. A novel approach for validation of CBCTeLFOV was demonstrated by combined geometry of Catphan-504 and Catphan-604 phantoms. To simulate actual treatment scenarios, at first, the end-to-end workflow of CSI with VMAT was investigated using an anthropomorphic phantom and then applied for two patients (based on random selection). RESULTS: The fused CBCTeLFOV images were in excellent agreement with planning CT (pCT). The custom developed software effectively manages spatial misalignments arising out of the uncertainties in treatment/setup geometry. Although the structures mapped from pCT to CBCTeLFOV showed minimal variations, a maximum spatial displacement of up to 1.2 cm (and the mean of 0.8 ± 0.3 cm) was recorded in phantom study. Adaptive plan evaluation of patient paradigms showed the likelihood of under-dosing the craniospinal target. CONCLUSION: Our protocol serves as a guide for precise localization of entire CSA and to ensure adequate dose to the large and complex targets. It can also be adapted for other complex treatment techniques such as total-marrow-irradiation and total-lymphoid-irradiation.

3.
Med Dosim ; 45(3): 256-263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362370

RESUMO

To evaluate the dosimetric and clinical advantages of using deep-inspiration breath-hold (DIBH) technique in hybrid solitary dynamic portal radiotherapy (hSDPRT) for left-sided chest-wall plus regional nodal irradiation and to demonstrate a simplified strategy for preclinical commissioning and calibration of DIBH-gating technique. Fifteen patients with left-sided breast cancer who underwent postmastectomy radiotherapy using hSDPRT were retrospectively evaluated. Two sets of planning-CT images were acquired for each patient, one with free/normal breathing and the other with DIBH. The hSDPRT plans were computed to deliver about 85% of the prescribed dose using static open fields and 15% of dose using a less complex solitary dynamic field. The dosimetric differences between the paired samples were compared using the Wilcoxon signed-rank test. For clinical commissioning of gated treatments, a respiratory simulator equipped with a microcontroller was programmed to simulate free-breathing and DIBH-patterns using a custom-developed android application. While both the hSDPRT plans displayed identical target coverage on both the image-sets, the DIBH technique resulted in statistically significant differences in various dose-volume metrics of heart, left-anterior-descending artery, and ipsilateral-lung structures. The hSDPRT plan with DIBH entails reduced total monitor unit (354.9 ± 13.6 MU) and breath-hold time ranging from 2.9 ± 0.3 to 13.7 ± 0.8 seconds/field, along with an acceptable impact on overall machine throughput. DIBH is a feasible method to effectively address the delivery uncertainty and produce substantial sparing of heart and lung when combined with hSDPRT. Streamlined procedures for commissioning and calibration of DIBH-gating technique are essential for more efficient clinical practice.


Assuntos
Suspensão da Respiração , Planejamento da Radioterapia Assistida por Computador , Parede Torácica , Neoplasias Unilaterais da Mama/radioterapia , Feminino , Humanos , Mastectomia , Órgãos em Risco , Radiometria , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Neoplasias Unilaterais da Mama/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA