Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLOS Digit Health ; 3(9): e0000574, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39298384

RESUMO

In recent years, there has been substantial work in low-cost medical diagnostics based on the physical manifestations of disease. This is due to advancements in data analysis techniques and classification algorithms and the increased availability of computing power through smart devices. Smartphones and their ability to interface with simple sensors such as inertial measurement units (IMUs), microphones, piezoelectric sensors, etc., or with convenient attachments such as lenses have revolutionized the ability collect medically relevant data easily. Even if the data has relatively low resolution or signal to noise ratio, newer algorithms have made it possible to identify disease with this data. Many low-cost diagnostic tools have been created in medical fields spanning from neurology to dermatology to obstetrics. These tools are particularly useful in low-resource areas where access to expensive diagnostic equipment may not be possible. The ultimate goal would be the creation of a "diagnostic toolkit" consisting of a smartphone and a set of sensors and attachments that can be used to screen for a wide set of diseases in a community healthcare setting. However, there are a few concerns that still need to be overcome in low-cost diagnostics: lack of incentives to bring these devices to market, algorithmic bias, "black box" nature of the algorithms, and data storage/transfer concerns.

2.
Brain Sci ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34679363

RESUMO

Conventional means of Parkinson's Disease (PD) screening rely on qualitative tests typically administered by trained neurologists. Tablet technologies that enable data collection during handwriting and drawing tasks may provide low-cost, portable, and instantaneous quantitative methods for high-throughput PD screening. However, past efforts to use data from tablet-based drawing processes to distinguish between PD and control populations have demonstrated only moderate classification ability. Focusing on digitized drawings of Archimedean spirals, the present study utilized data from the open-access ParkinsonHW dataset to improve existing PD drawing diagnostic pipelines. Random forest classifiers were constructed using previously documented features and highly-predictive, newly-proposed features that leverage the many unique mathematical characteristics of the Archimedean spiral. This approach yielded an AUC of 0.999 on the particular dataset we tested on, and more importantly identified interpretable features with good promise for generalization across diverse patient cohorts. It demonstrated the potency of mathematical relationships inherent to the drawing shape and the usefulness of sparse feature sets and simple models, which further enhance interpretability, in the face of limited sample size. The results of this study also inform suggestions for future drawing task design and data analytics (feature extraction, shape selection, task diversity, drawing templates, and data sharing).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA