Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biomacromolecules ; 25(5): 3076-3086, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38634234

RESUMO

Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.


Assuntos
Celulose , Celulose/química , Fibra de Algodão , Cromatografia em Gel/métodos
2.
Biomacromolecules ; 23(3): 1413-1422, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35212532

RESUMO

In technical lignins, functionality is strongly related to molar mass. Hence, any technical lignin exhibits concurrent functionality-type distribution (FTD) along its molar mass distribution (MMD). This study combined preparative size-exclusion chromatography with offline characterizations to acquire highly resolved profiles of the functional heterogeneity of technical lignins, which represent crucial information for their material use. The shape of these profiles showed considerable dissimilarity between different technical lignins and followed sigmoid trends. Determining the dispersity in functionality (DF) of lignins via their FTD revealed a rather homogeneous distribution of their functionalities (DF of 1.00-1.21). The high resolution of the acquired profiles of functional heterogeneity facilitated the development of a robust calculation method for the estimation of functional group contents of lignin fractions based simply on their MMD, an invaluable tool to simulate the effects of intended purification processes. Moreover, a more thorough evaluation of separations based on functionality becomes accessible.


Assuntos
Demência Frontotemporal , Lignina , Cromatografia em Gel , Humanos , Lignina/química , Peso Molecular
3.
Biomacromolecules ; 22(10): 4365-4372, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506709

RESUMO

The electron beam irradiation (EBI) of native lignin has received little attention. Thus, its potential use in lignin-based biorefineries is not fully understood. EBI was applied to selected lignin samples and the structural and chemical changes were analyzed, revealing the suitability, limitations, and potential purpose of EBI in wood biorefineries. Isolated milled wood, kraft, and sulfite lignin from beech and eucalyptus were subjected to up to 200 kGy of irradiation. The analysis included gel permeation chromatography for molar masses, heteronuclear single quantum coherence (HSQC)- and 31P NMR and headspace gas chromatography-mass spectrometry for functional groups, and thermogravimetric analysis for thermal stability. Most samples resisted irradiation. Subtle changes occurred in the molecular weight distribution and thermal stability of milled wood lignin. EBI was found to be a suitable pretreatment method for woody biomass if the avoidance of lignin condensation and chemical modification is a high priority.


Assuntos
Eucalyptus , Lignina , Biomassa , Elétrons , Madeira
4.
Biomacromolecules ; 20(8): 3142-3146, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31264848

RESUMO

Bacterial cellulose (BC) has a broad range of applications in biomedical fields and cosmetics. Applied as wound dressing, BC tends to stick to the sore especially upon drying, and hydrophobization improves its performance in this regard. This article reports a facile and rapid yet a highly efficient approach for BC hydrophobization through direct polymerization of ethyl 2-cyanoacrylate on the BC fibers. The modified material preserves the favorable porous structure of the matrix material while displaying significantly higher hydrophobicity and significantly decreased stickiness to the wound. The BC surface can be modified in 15 min. Overall, this can be considered a ready-to-apply approach for the fabrication of BC wound dressings with enhanced performance. The modification was demonstrated to improve the material's biocompatibility and to introduce antimicrobial activity (immortalized human fibroblast assay).


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/química , Celulose/química , Cianoacrilatos/química , Fibroblastos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Anti-Infecciosos/química , Bandagens , Fibroblastos/citologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Polimerização
5.
J Sci Food Agric ; 98(1): 140-146, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28543171

RESUMO

BACKGROUND: The water unextractable arabinoxylans (WUAX) contain beneficial phenolic compounds that can be used for food rather than for animal feed. The antioxidant activities of defatted rice bran obtained by xylanase-aided extraction is reported herein. The chemical and molecular characteristics of extracted fractions were investigated. RESULTS: The WUAX hydrolysate precipitated by 0-60% ethanol (F60), 60-90% ethanol (F6090), and more than 90% ethanol (F90) had decreased molar masses with increasing ethanol concentration. The fractions of interest, F60 and F6090, contained 75% arabinoxylans with ferulic acid as the major bound phenolic acid, followed by p-coumaric acid. According to chemical-based antioxidant assays F60 and F6090 exhibited higher diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric iron reducing ability than F90 which contained minor contents of small sugars and free phenolic acids. In cell-based antioxidant assays, using the fluorescent 2',7'-dichlorofluorescein diacetate probe, all three fractions were potent intracellular scavengers. CONCLUSION: The high molar mass of WUAX hydrolysates with high amount of bound phenolics contributes to the chemical-based antioxidant activity. All fractions of WUAX hydrolysates showed high potent intracellular scavenging activity regardless of molar mass, content and the component of bound phenolics. © 2017 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Oryza/química , Fenóis/química , Extratos Vegetais/química , Sementes/química , Gorduras/análise , Oryza/enzimologia , Xilanos/análise
6.
Biomacromolecules ; 17(9): 2972-80, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27529432

RESUMO

The cleavage of the C2-C3 bond in the building units of 1 → 4-linked polysaccharides by periodate formally results in two aldehyde units, which are present in several masked forms. The structural elucidation of such polysaccharide dialdehydes remains a big challenge. Since polysaccharide derivatives are increasingly applied in materials technology, unveiling the exact structure is of utmost importance. To address this issue for xylan, dialdehyde xylan (DAX, oxidation degree of 91.5%) has been synthesized as water-soluble polymer. The ATR-FTIR spectrum of DAX showed free aldehyde to be absent and exhibited a characteristic absorption at 858 cm(-1) related to hemiacetal groups. By a combination of 1D and 2D NMR techniques, it was confirmed that oxidized xylan is present as poly(2,6-dihydroxy-3-methoxy-5-methyl-3,5-diyl-1,4-dioxane). Based on GPC analysis, the DAX polymer shows a slightly lower molar mass (6.6 kDa) compared to the starting material (7.7 kDa) right after oxidation, and degraded further after one month of storage in 0.1 M NaCl solution (4.3 kDa). The oxidized xylan demonstrated lower thermal stability upon TGA analysis and a greater amount of residual char (20.6%) compared to the unmodified xylan (13.7%).


Assuntos
Aldeídos/química , Ácido Periódico/química , Polímeros/química , Polissacarídeos/síntese química , Água/química , Xilanos/química , Peso Molecular , Oxirredução
7.
Carbohydr Polym ; 346: 122653, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245511

RESUMO

A combination of maleic acid and sodium hypophosphite as a durable press finishing agent has been reported as a safer but equally effective alternative to conventional formaldehyde-based cross-linking agents for applications in cellulose-based fiber and textile finishing. However, the mechanistic details of this system have not yet been fully elucidated to allow optimization of the conditions. Effective cross-linking treatment requires high curing temperatures of ≥160 °C, which enhances oxidative and thermal degradation of cellulose. In this work, the sequential steps of the cross-linking mechanism were investigated both with model compounds and cellulosic substrates. Extensive NMR studies on model compounds revealed several side reactions alongside the synthesis of the targeted cross-linkable moiety. As an alternative, to circumvent side reactions, a two-step procedure was used by synthesizing the cross-linker sodium 2-[(1,2-dicarboxyethyl)phosphinate]succinic acid in a well-defined pre-condensation reaction before application onto the cellulosic substrate. Further, the effect of the cross-linking treatment on the molecular weight distribution of cellulose was studied by gel permeation chromatography, which showed degradation due to maleic acid/sodium hypophosphite treatment. By using sodium 2-[(1,2-dicarboxyethyl)phosphinate]succinic acid and sodium hypophosphite, this degradation could be significantly limited.

8.
ChemSusChem ; 17(10): e202301840, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38240610

RESUMO

We present an approach to overcome the challenges associated with the increasing demand of high-throughput characterization of technical lignins, a key resource in emerging bioeconomies. Our approach offers a resort from the lack of direct, simple, and low-cost analytical techniques for lignin characterization by employing multivariate calibration models based on infrared (IR) spectroscopy to predict structural properties of lignins (i. e., functionality, molar mass). By leveraging a comprehensive database of over 500 well-characterized technical lignin samples - a factor of 10 larger than previously used sets - our chemometric models achieved high levels of quality and statistical confidence for the determination of different functional group contents (RMSEPs of 4-16 %). However, the statistical moments of the molar mass distribution are still best determined by size-exclusion chromatography. Analyses of over 500 technical lignins offered also a great opportunity to provide information on the general variability in kraft lignins and lignosulfonates (from different origins). Overall, the effected savings in analysis time (>7 h), resources, and required sample mass combined with non-destructiveness of the measurement satisfy key demands for efficient high-throughput lignin analyses. Finally, we discuss the advantages, disadvantages, and limitations of our approach, along with critical insights into the associated chemical-analytical and spectroscopic challenges.

9.
Biotechnol Biofuels Bioprod ; 17(1): 118, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182111

RESUMO

BACKGROUND: In recent years, lytic polysaccharide monooxygenases (LPMOs) that oxidatively cleave cellulose have gained increasing attention in cellulose fiber modification. LPMOs are relatively small copper-dependent redox enzymes that occur as single domain proteins but may also contain an appended carbohydrate-binding module (CBM). Previous studies have indicated that the CBM "immobilizes" the LPMO on the substrate and thus leads to more localized oxidation of the fiber surface. Still, our understanding of how LPMOs and their CBMs modify cellulose fibers remains limited. RESULTS: Here, we studied the impact of the CBM on the fiber-modifying properties of NcAA9C, a two-domain family AA9 LPMO from Neurospora crassa, using both biochemical methods as well as newly developed multistep fiber dissolution methods that allow mapping LPMO action across the fiber, from the fiber surface to the fiber core. The presence of the CBM in NcAA9C improved binding towards amorphous (PASC), natural (Cell I), and alkali-treated (Cell II) cellulose, and the CBM was essential for significant binding of the non-reduced LPMO to Cell I and Cell II. Substrate binding of the catalytic domain was promoted by reduction, allowing the truncated CBM-free NcAA9C to degrade Cell I and Cell II, albeit less efficiently and with more autocatalytic enzyme degradation compared to the full-length enzyme. The sequential dissolution analyses showed that cuts by the CBM-free enzyme are more evenly spread through the fiber compared to the CBM-containing full-length enzyme and showed that the truncated enzyme can penetrate deeper into the fiber, thus giving relatively more oxidation and cleavage in the fiber core. CONCLUSIONS: These results demonstrate the capability of LPMOs to modify cellulose fibers from surface to core and reveal how variation in enzyme modularity can be used to generate varying cellulose-based materials. While the implications of these findings for LPMO-based cellulose fiber engineering remain to be explored, it is clear that the presence of a CBM is an important determinant of the three-dimensional distribution of oxidation sites in the fiber.

10.
Carbohydr Polym ; 330: 121816, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368098

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are excellent candidates for enzymatic functionalization of natural polysaccharides, such as cellulose or chitin, and are gaining relevance in the search for renewable biomaterials. Here, we assessed the cellulose fiber modification potential and catalytic performance of eleven cellulose-active fungal AA9-type LPMOs, including C1-, C4-, and C1/C4-oxidizing LPMOs with and without CBM1 carbohydrate-binding modules, on cellulosic substrates with different degrees of crystallinity and polymer chain arrangement, namely, Cellulose I, Cellulose II, and amorphous cellulose. The potential of LPMOs for cellulose fiber modification varied among the LPMOs and depended primarily on operational stability and substrate binding, and, to some extent, also on regioselectivity and domain structure. While all tested LPMOs were active on natural Cellulose I-type fibers, activity on the Cellulose II allomorph was almost exclusively detected for LPMOs containing a CBM1 and LPMOs with activity on soluble hemicelluloses and cello-oligosaccharides, for example NcAA9C from Neurospora crassa. The single-domain variant of NcAA9C oxidized the cellulose fibers to a higher extent than its CBM-containing natural variant and released less soluble products, indicating a more dispersed oxidation pattern without a CBM. Our findings reveal great functional variation among cellulose-active LPMOs, laying the groundwork for further LPMO-based cellulose engineering.


Assuntos
Celulose , Polissacarídeos , Celulose/metabolismo , Polissacarídeos/metabolismo , Oxirredução , Oxigenases de Função Mista/química , Oligossacarídeos/metabolismo , Estresse Oxidativo
11.
Carbohydr Polym ; 340: 122210, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858031

RESUMO

Fluorescence labeling with N-(1-naphthyl)ethylenediamine is highly effective for quantifying oxidized reducing end groups (REGs) in cellulosic materials. When combined with size exclusion chromatography in DMAc/LiCl, along with fluorescence / multiple-angle laser light scattering / refractive index detection, a detailed profile of C1-oxidized REGs relative to the molecular weight distribution of the cellulosic material can be obtained. In this work, the derivatization process was extensively optimized, to be carried out heterogeneously in the solvent N-methyl-2-pyrrolidone. Furthermore, we show that to achieve high selectivity for carboxyl groups at the C1 position, keto and aldehyde groups need to be selectively reduced (e.g., by NaBH4), and carboxyl groups other than at C1 need to be blocked (e.g., by methylation with (trimethylsilyl)diazomethane) prior to fluorescence labeling of carboxyl groups at C1 position. Finally, we demonstrate the practical value of the analytical method by measuring the content of the C1-oxidized REGs in cellulose samples after chemical (by Pinnick oxidation) or enzymatic (by treatment with C1-oxidizing LPMO enzymes) oxidation of various pulp samples.

12.
Carbohydr Polym ; 328: 121696, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220335

RESUMO

Enzymatic treatment of cellulosic fibres is a green alternative to classical chemical modification. For many applications, mild procedures for cellulose alteration are sufficient, in which the fibre structure and, therefore, the mechanical performance of cellulosic fibres are preserved. Lytic polysaccharide monooxygenases (LPMOs) bear a great potential to become a green reagent for such targeted cellulose modifications. An obstacle for wide implementation of LPMOs in tailored cellulose chemistry is the lack of suitable techniques to precisely monitor the LPMO impact on the polymer. Soluble oxidized cello-oligomers can be quantified using chromatographic and mass-spectrometric techniques. A considerable portion of the oxidized sites, however, remain on the insoluble cellulose fibres, and their quantification is difficult. Here, we describe a method for the simultaneous quantification of oxidized sites on cellulose fibres and changes in their molar mass distribution after treatment with LPMOs. The method is based on quantitative, heterogeneous, carbonyl-selective labelling with a fluorescent label (CCOA) followed by cellulose dissolution and size-exclusion chromatography (SEC). Application of the method to reactions of seven different LPMOs with pure cellulose fibres revealed pronounced functional differences between the enzymes, showing that this CCOA/SEC/MALS method is a promising tool to better understand the catalytic action of LPMOs.


Assuntos
Oxigenases de Função Mista , Polissacarídeos , Oxigenases de Função Mista/química , Celulose , Espectrometria de Massas , Cromatografia
13.
RSC Adv ; 13(14): 9479-9490, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968046

RESUMO

A new chemical modification protocol to generate N-lignins is presented, based on Indulin AT and Mg2+-lignosulfonate. The already known ammonoxidation reaction in liquid phase was used as a starting point and stepwise optimised towards a full solid-state approach. The "classical" liquid ammonoxidation products, the transition products from the optimization trials, as well as the "solid-state" products were comprehensively analysed and compared to the literature. The N-lignins obtained with the conventional ammonoxidation protocol showed the same properties as reported. Their molar mass distributions and the hydroxy group contents, hitherto not accessible due to solubility problems, were measured according to a recently reported protocol. N-Indulin showed an N-content up to 11 wt% and N-lignosulfonate up to 16 wt%. The transition experiments from liquid to solid-state gave insights into the influence of chemical components and reaction conditions. The use of a single chemical, the urea-hydrogen peroxide complex (UHP, "carbamide peroxide"), was sufficient to generate N-lignins with satisfying N-content. This chemical acts both as an N-source and as the oxidant. Following the optimization, a series of solid-state ammonoxidation tests were carried out. High N-contents of 10% in the case of Indulin and 11% in the case of lignosulfonate were obtained. By varying the ratio of UHP to lignin, the N-content can be controlled. Structural analysis showed that the N is organically bound to the lignin, similar to the "classical" ammonoxidation products obtained under homogeneous conditions. Overall, a new ammonoxidation protocol was developed which does not require an external gas supply nor liquids or dissolved reactants. This opens the possibility for carrying out the lignin modification in closed continuous reactor systems, such as extruders. The new, facile solid-state protocol will hopefully help N-lignins to find more consideration as a fertilizing material and in soil-improving materials.

14.
Nat Chem ; 14(9): 976-984, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35739426

RESUMO

The development of sustainable plastics from abundant renewable feedstocks has been limited by the complexity and efficiency of their production, as well as their lack of competitive material properties. Here we demonstrate the direct transformation of the hemicellulosic fraction of non-edible biomass into a tricyclic diester plastic precursor at 83% yield (95% from commercial xylose) during integrated plant fractionation with glyoxylic acid. Melt polycondensation of the resulting diester with a range of aliphatic diols led to amorphous polyesters (Mn = 30-60 kDa) with high glass transition temperatures (72-100 °C), tough mechanical properties (ultimate tensile strengths of 63-77 MPa, tensile moduli of 2,000-2,500 MPa and elongations at break of 50-80%) and strong gas barriers (oxygen transmission rates (100 µm) of 11-24 cc m-2 day-1 bar-1 and water vapour transmission rates (100 µm) of 25-36 g m-2 day-1) that could be processed by injection moulding, thermoforming, twin-screw extrusion and three-dimensional printing. Although standardized biodegradation studies still need to be performed, the inherently degradable nature of these materials facilitated their chemical recycling via methanolysis at 64 °C, and eventual depolymerization in room-temperature water.


Assuntos
Poliésteres , Açúcares , Lignina , Plásticos
15.
ChemSusChem ; 14(4): 1016-1036, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33285039

RESUMO

Sugar-based biorefineries have faced significant economic challenges. Biorefinery lignins are often classified as low-value products (fuel or low-cost chemical feedstock) mainly due to low lignin purities in the crude material. However, recent research has shown that biorefinery lignins have a great chance of being successfully used as high-value products, which in turn should result in an economy renaissance of the whole biorefinery idea. This critical review summarizes recent developments from our groups, along with the state-of-the-art in the valorization of technical lignins, with the focus on biorefinery lignins. A beneficial synergistic effect of lignin and cellulose mixtures used in different applications (wood adhesives, carbon fiber and nanofibers, thermoplastics) has been demonstrated. This phenomenon causes crude biorefinery lignins, which contain a significant amount of residual crystalline cellulose, to perform superior to high-purity lignins in certain applications. Where previously specific applications required high-purity and/or functionalized lignins with narrow molecular weight distributions, simple green processes for upgrading crude biorefinery lignin are suggested here as an alternative. These approaches can be easily combined with lignin micro-/nanoparticles (LMNP) production. The processes should also be cost-efficient compared to traditional lignin modifications. Biorefinery processes allow much greater flexibility in optimizing the lignin characteristics desirable for specific applications than traditional pulping processes. Such lignin engineering, at the same time, requires an efficient strategy capable of handling large datasets to find correlations between process variables, lignin structures and properties and finally their performance in different applications.

16.
ChemSusChem ; 13(17): 4595-4604, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441817

RESUMO

Lignosulfonates are bulk-scale byproducts of industrial sulfite pulping. Their amphiphilic character plays a central role in their successful application in large-scale materials production. As an inherent feature of the chemical structure, this amphiphilic character poses a major analytical challenge. In this study, the amphiphilic behavior of an industrial lignosulfonate was investigated by hydrophobic interaction chromatography (HIC). This technique exploits hydrophobic regions present on the surface of lignosulfonates. Extensive characterization of the obtained fractions from preparative HIC, in terms of elemental composition, functional-group content, chemical structure, and molecular weight distribution, revealed a detailed picture of the chemical composition distribution. The charge-to-size ratio, that is, differences in the degree of sulfonation, was the dominant factor governing separation in HIC. A combination of HIC with size exclusion chromatography showed good orthogonality of separation and demonstrated the power of this 2 D liquid chromatography approach for an in-depth characterization, in general, and amphiphilicity, in particular.

17.
Mater Sci Eng C Mater Biol Appl ; 110: 110619, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204063

RESUMO

Bacterial cellulose (BC) hydrogels are among the most efficient materials already being used for the treatment of complex wounds. The moist environment provided by the BC dressing is a key feature assuring efficient wound recovery. Improving the dressings´ moisture-holding ability facilitates its application and leads to an economically preferable extended wear time. To produce materials with reduced moisture loss, BC dressings were impregnated with a secondary hydrophilic component: alginate. The feasibility of an industrial fabrication of this composite was evaluated on pilot scale equipment. It was shown that the procedure can easily be scaled up without significantly increasing the manufacturing time. The resultant composite possessed improved water-retention properties, providing a smooth dressing exchange as demonstrated by a wound-imitating model. The new materials were moreover shown to be compatible with an antimicrobially active compound, which assures their efficiency in the treatment of highly colonized wounds.


Assuntos
Alginatos/química , Antibacterianos/química , Bactérias/química , Bandagens , Celulose/química , Linhagem Celular Transformada , Humanos , Teste de Materiais
18.
Carbohydr Polym ; 241: 116368, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32507197

RESUMO

Development of a sustainable bioeconomy requires valorization of renewable resources, such as wood hemicelluloses. The intra- and inter-molecular association of hemicelluloses within themselves or with other wood components can result in complex macromolecular features. These features exhibit functionality as hydrocolloids, however macromolecular characterization of these heterogeneous materials are challenging using conventional techniques such as size-exclusion chromatography. We studied galactoglucomannans (GGM) -rich softwood extracts at two grades of purity-as crude extract and after ethanol-precipitation. Asymmetrical flow field-flow fractionation (AF4) was optimized and utilized to fractionate size classes in GGM extracts, and subsequent characterization was performed with light scattering and microscopy techniques. Both GGM extracts contained polysaccharides of around 10,000 g/mol molar mass, and colloidal assemblies and/or particles in sub-micron size range. The optimized AF4 method facilitates the characterization of complex biomass-derived carbohydrates without pre-fractionation, and provides valuable understanding of their unique macromolecular features for their future application in food, pharmaceuticals, and cosmetics.


Assuntos
Mananas , Extratos Vegetais/química , Polissacarídeos/química , Madeira/química , Mananas/química , Mananas/isolamento & purificação , Picea/química
19.
ChemSusChem ; 11(18): 3259-3268, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29989331

RESUMO

Determination of molecular weight parameters of native and, in particular, technical lignins are based on size exclusion chromatography (SEC) approaches. However, no matter which approach is used, either conventional SEC with a refractive index detector and calibration with standards or multi-angle light scattering (MALS) detection at 488 nm, 633 nm, 658 nm, or 690 nm, all variants can be severely erroneous. The lack of calibration standards with high structural similarity to lignin impairs the quality of the molar masses determined by conventional SEC, and the typical fluorescence of (technical) lignins renders the corresponding MALS data rather questionable. Application of MALS detection at 785 nm by using an infrared laser largely overcomes those problems and allows for a reliable and reproducible determination of the molar mass distributions of all types of lignins, which has been demonstrated in this study for various and structurally different analytes, such as kraft lignins, milled-wood lignin, lignosulfonates, and biorefinery lignins. The topics of calibration, lignin fluorescence, and lignin UV absorption in connection with MALS detection are critically discussed in detail, and a reliable protocol is presented. Correction factors based on MALS measurements have been determined for commercially available calibration standards, such as pullulan and polystyrene sulfonate, so that now more reliable mass data can be obtained also if no MALS system is available and these conventional calibration standards have to be resorted to.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA