Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 279: 126543, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39018947

RESUMO

A state-of-the-art, ultrasensitive, paper-based SERS sensor has been developed using silver nanostars (AgNSs) in combination with synthetic and natural antibodies. A key component of this innovative sensor is the plastic antibody, which was synthesized using molecularly imprinted polymer (MIP) technology. This ground-breaking combination of paper substrates/MIPs with AgNSs, which is similar to a sandwich immunoassay, is used for the first time with the aim of SERS detection and specifically targets nucleolin (NCL), a cancer biomarker. The sensor device was carefully fabricated by synthesizing a polyacrylamide-based MIP on cellulose paper (Whatman Grade 1 filter) by photopolymerization. The binding of NCL to the MIP was then confirmed by natural antibody binding using a sandwich assay for quantitative SERS analysis. To facilitate the detection of NCL, antibodies were pre-bound to AgNSs with a Raman tag so that the SERS signal could indicate the presence of NCL. The composition of the sensory layers/materials was meticulously optimized. The intensity of the Raman signal at ∼1078 cm-1 showed a linear trend that correlated with increasing concentrations of NCL, ranging from 0.1 to 1000 nmol L-1, with a limit of detection down to 0.068 nmol L-1 in human serum. The selectivity of the sensor was confirmed by testing its analytical response in the presence of cystatin C and lysozyme. The paper-based SERS detection system for NCL is characterized by its simplicity, sustainability, high sensitivity and stability and thus embodies essential properties for point-of-care applications. This approach is promising for expansion to other biomarkers in various fields, depending on the availability of synthetic and natural antibodies.


Assuntos
Anticorpos , Nucleolina , Papel , Fosfoproteínas , Proteínas de Ligação a RNA , Prata , Análise Espectral Raman , Prata/química , Fosfoproteínas/imunologia , Humanos , Proteínas de Ligação a RNA/imunologia , Anticorpos/química , Anticorpos/imunologia , Nanopartículas Metálicas/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Polímeros Molecularmente Impressos/química
2.
Sci Data ; 5: 180242, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30422127

RESUMO

Kazakhstan's soil properties have yet to be comprehensively characterized. We sampled 40 sites consisting of ten major soil types at spring (wet) and late-summer (dry) seasons. The sample locations range from semi-arid to arid with an annual mean air temperature from 1.2 to 10.7 °C and annual precipitation from less than 200 to around 400 mm. Overall topsoil total (STC), organic (SOC), and inorganic (SIC) carbon did not change significantly between spring and late summer. STC and SOC show a wave like pattern from north to south with two maxima in northern and southern Kazakhstan and one minimum in central Kazakhstan. With a few exceptions SIC content at northern sites is generally low, whereas at Lake Balkhash SIC can exceed 75% of STC. Independent of the seasons, SOC significantly differed among soil types. Total nitrogen content distribution among our sampling sites followed a similar pattern as SOC with significant differences between soil types occurring in northern, central and southern Kazakhstan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA