Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Saudi Pharm J ; 31(11): 101794, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37822695

RESUMO

Introduction: The adverse effects of clinically used anti-cancer medication and the rise in resistive micro-organisms have limited therapeutic options. Multiple anti-cancer drugs are derived from medicinal herbs which also have shown anti-bacterial effects. This study aimed to identify the optimal extraction solvent for detecting the cytotoxic and anti-bacterial effects of Calligonum comosum (C. Comosum) and Rumex vesicarius (R. Vesicarius) extracts. Additionally, the study aimed to identify active metabolites and assess their potential as future drug candidates for anti-cancer and anti-bacterial therapeutics. Methods: Leaves from both plants were extracted using ethanol, ethyl acetate, chloroform, and water. The cytotoxic effects of the extracts were tested on liver, colon, and breast cancer cell lines. Apoptosis was assessed using High Content Imaging (HCI) and the ApoTox triplex Glo assay. The anti-bacterial effects were determined using agar-well diffusion. Liquid chromatography-mass spectrometry (LC-MS) was used to tentatively identify the secondary metabolites. In silico computational studies were conducted to determine the metabolites' mode of action, safety, and pharmacokinetic properties. Results: The ethanolic extract of C. Comosum exhibited potent cytotoxicity on breast cancer cell lines, with IC50 values of 54.97 µg/mL and 58 µg/mL for KAIMRC2 and MDA-MB-231, respectively. It also induced apoptosis in colon and breast cancer cell lines. All tested extracts of C. Comosum and R. Vesicarius demonstrated anti-bacterial activity against Staphylococcus aureus and Escherichia coli. Seven active metabolites were identified, one of which is Kaempferol 3-O-Glucoside-7-O-Rhamnoside, which showed strong (predicted) anti-cancer activity. Kaempferol 3-O-Glucoside-7-O-Rhamnoside and Quercetin-3-O-Glucuronide also exhibited potential anti-bacterial effects on gram-positive and negative bacteria. Conclusion: Ethanol extraction of C. Comosum solubilizes active metabolites with potential therapeutic applications in cancer treatment and bacterial infections. Kaempferol 3-O-Glucoside-7-O-Rhamnoside, in particular, shows promise as a dual therapeutic drug candidate for further research and development to improve its efficacy, safety, and pharmacokinetic profile.

2.
Molecules ; 27(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432115

RESUMO

An in silico approach applying computer-simulated models helps enhance biomedicines by sightseeing the pharmacology of potential therapeutics. Currently, an in silico study combined with in vitro assays investigated the antimicrobial ability of Limoniastrum monopetalum and silver nanoparticles (AgNPs) fabricated by its aid. AgNPs mediated by L. monopetalum were characterized using FTIR, TEM, SEM, and DLS. L. monopetalum metabolites were detected by QTOF-LCMS and assessed using an in silico study for pharmacological properties. The antibacterial ability of an L. monopetalum extract and AgNPs was investigated. PASS Online predictions and the swissADME web server were used for antibacterial activity and potential molecular target metabolites, respectively. Spherical AgNPs with a 68.79 nm average size diameter were obtained. Twelve biomolecules (ferulic acid, trihydroxy-octadecenoic acid, catechin, pinoresinol, gallic acid, myricetin, 6-hydroxyluteolin, 6,7-dihydroxy-5-methoxy 7-O-ß-d-glucopyranoside, methyl gallate, isorhamnetin, chlorogenic acid, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 6-O-(6-deoxy-ß-l-mannopyranosyl)-ß-d-glucopyranoside) were identified. The L. monopetalum extract and AgNPs displayed antibacterial effects. The computational study suggested that L. Monopetalum metabolites could hold promising antibacterial activity with minimal toxicity and an acceptable pharmaceutical profile. The in silico approach indicated that metabolites 8 and 12 have the highest antibacterial activity, and swissADME web server results suggested the CA II enzyme as a potential molecular target for both metabolites. Novel therapeutic agents could be discovered using in silico molecular target prediction combined with in vitro studies. Among L. Monopetalum metabolites, metabolite 12 could serve as a starting point for potential antibacterial treatment for several human bacterial infections.


Assuntos
Nanopartículas Metálicas , Plumbaginaceae , Humanos , Prata/farmacologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
3.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458609

RESUMO

Electron-rich, nitrogenous heteroaromatic compounds interact more with biological/cellular components than their non-nitrogenous counterparts. The strong intermolecular interactions with proteins, enzymes, and receptors confer significant biological and therapeutic properties to the imidazole derivatives, giving rise to a well-known and extensively used range of therapeutic drugs used for infections, inflammation, and cancer, to name a few. The current study investigates the anti-cancer properties of fourteen previously synthesized nitrogenous heterocycles, derivatives of imidazole and oxazolone, on a panel of cancer cell lines and, in addition, predicts the molecular interactions, pharmacokinetic and safety profiles of these compounds. METHOD: The MTT and CellTiter-Glo® assays were used to screen the imidazole and oxazolone derivatives on six cancer cell lines: HL60, MDA-MB-321, KAIMRC1, KMIRC2, MCF-10A, and HCT8. Subsequently, in vitro tubulin staining and imaging were performed, and the level of apoptosis was measured using the Promega ApoTox-Glo® triplex assay. Furthermore, several computational tools were utilized to investigate the pharmacokinetics and safety profile, including PASS Online, SEA Search, the QikProp tool, SwissADME, ProTox-II, and an in silico molecular docking study on tubulin to identify the critical molecular interactions. RESULTS: In vitro analysis identified compounds 8 and 9 to possess the most significant potent cytotoxic activity on the HL60 and MDA-MB-231 cell lines, supported by PASS Online anti-cancer predictions with pa scores of 0.413 and 0.434, respectively. In addition, compound 9 induced caspase 3/7 dependent-apoptosis and interfered with tubulin polymerization in the MDA-MB-231 cell line, consistent with in silico docking results, identifying binding similarity to the native ligand colchicine. All the derivatives, including compounds 8 and 9, had acceptable pharmacokinetics; however, the safety profile was suboptimal for all the tested derivates except compound 4. CONCLUSION: The imidazole derivative compound 9 is a promising anti-cancer agent that switches on caspase-dependent apoptotic cell death and modulates microtubule function. Therefore, it could be a lead compound for further drug optimization and development.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Nitrogênio/farmacologia , Oxazolona/farmacologia , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
4.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164089

RESUMO

Liver cancer is a leading cause of cancer death globally. Marine mollusc-derived drugs have gained attention as potential natural-based anti-cancer agents to overcome the side effects caused by conventional chemotherapeutic drugs during cancer therapy. Using liquid chromatography-mass spectrometry, the main biomolecules in the purple ink secretion released by the sea hare, named Bursatella leachii (B. leachii), were identified as hectochlorin, malyngamide X, malyngolide S, bursatellin and lyngbyatoxin A. The cytotoxic effects of B. leachii ink concentrate against human hepatocarcinoma (HepG2) cells were determined to be dose- and time-dependent, and further exploration of the underlying mechanisms causing the programmed cell death (apoptosis) were performed. The expression of cleaved-caspase-8 and cleaved-caspase-3, key cysteine-aspartic proteases involved in the initiation and completion of the apoptosis process, appeared after HepG2 cell exposure to the B. leachii ink concentrate. The gene expression levels of pro-apoptotic BAX, TP53 and Cyclin D1 were increased after treatment with the B. leachii ink concentrate. Applying in silico approaches, the high scores predicted that bioactivities for the five compounds were protease and kinase inhibitors. The ADME and cytochrome profiles for the compounds were also predicted. Altogether, the B. leachii ink concentrate has high pro-apoptotic potentials, suggesting it as a promising safe natural product-based drug for the treatment of liver cancer.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Gastrópodes/química , Neoplasias Hepáticas/tratamento farmacológico , Amidas/química , Amidas/isolamento & purificação , Amidas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Células Hep G2 , Humanos , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Toxinas de Lyngbya/química , Toxinas de Lyngbya/isolamento & purificação , Toxinas de Lyngbya/farmacologia , Pirrolidinonas/química , Pirrolidinonas/isolamento & purificação , Pirrolidinonas/farmacologia , Tiazóis/química , Tiazóis/isolamento & purificação , Tiazóis/farmacologia
5.
J Nat Prod ; 83(12): 3564-3570, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33305943

RESUMO

Two new diterpene pyrones, asperginols A (1) and B (2), and four known analogues (3-6) were isolated from the endophytic fungus Aspergillus sp. HAB10R12. The structures and absolute configurations of these compounds were elucidated based on the analysis of their NMR, MS, and X-ray diffraction data. The revision of the absolute configurations at C-10, C-11, and C-14 of the known diterpene pyrones (3-6) and the determination of the configuration at the polyene side chain for compounds (4-6) were made using chemical methods and vibrational circular dichroism analysis. This group of diterpene pyrone compounds showed unique structural features including a 7/6/6 tricyclic diterpene moiety with an unusual trans-syn-trans stereochemical arrangement. Compound 6 showed moderate activity against the HT-29 colon cancer cell line.


Assuntos
Aspergillus/química , Diterpenos/química , Pironas/química , Estrutura Molecular , Análise Espectral/métodos
6.
Metabolites ; 14(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057691

RESUMO

There is a growing interest in the discovery of novel xanthine oxidase inhibitors for gout prevention and treatment with fewer side effects. This study aimed to identify the xanthine oxidase (XO) inhibitory potential and drug-likeness of the metabolites present in the methanolic leaf extract of Anastatica (A.) hierochuntica L. using in vitro and in silico models. The extract-derived metabolites were identified by liquid-chromatography-quadrupole-time-of-flight-mass-spectrometry (LC-QTOF-MS). Molecular docking predicted the XO inhibitory activity of the identified metabolites and validated the best scored in vitro XO inhibitory activities for experimental verification, as well as predictions of their anticancer, pharmacokinetic, and toxic properties; oral bioavailability; and endocrine disruption using SwissADMET, PASS, ProTox-II, and Endocrine Disruptome web servers. A total of 12 metabolites, with a majority of flavonoids, were identified. Rutin, quercetin, and luteolin flavonoids demonstrated the highest ranked docking scores of -12.39, -11.15, and -10.43, respectively, while the half-maximal inhibitory concentration (IC50) values of these metabolites against XO activity were 11.35 µM, 11.1 µM, and 21.58 µM, respectively. In addition, SwissADMET generated data related to the physicochemical properties and drug-likeness of the metabolites. Similarly, the PASS, ProTox-II, and Endocrine Disruptome prediction models stated the safe and potential use of these natural compounds. However, in vivo studies are necessary to support the development of the prominent and promising therapeutic use of A. hierochuntica methanolic-leaf-extract-derived metabolites as XO inhibitors for the prevention and treatment of hyperuricemic and gout patients. Furthermore, the predicted findings of the present study open a new paradigm for these extract-derived metabolites by revealing novel oncogenic targets for the potential treatment of human malignancies.

7.
Sci Rep ; 14(1): 7202, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531974

RESUMO

Cancer is responsible for approximately 10 million deaths worldwide, with 70% of the deaths occurring in low- and middle-income countries; as such safer and more effective anti-cancer drugs are required. Therefore, the potential benefits of Ziziphus nummularia and Ziziphus spina-christi as sources of anti-cancer agents were investigated. Z. nummularia and Z. spina-christi extracts were prepared using chloroform, ethanol, ethyl acetate, and water. The extracts' anti-cancer properties were determined using the MTT Cell Viability Assay in four cancer cell lines: breast (KAIMRC2 and MDA-MB-231), colorectal (HCT8), and liver (HepG2). The ApoTox-Glo Triplex Assay and high-content imaging (HCI)-Apoptosis Assay were used to assess KAIMRC2 and HCT8 cells further. In addition, KAIMRC2 cells were tested for microtubule staining, and AKT/mTOR protein expression was determined by western blot analysis. Liquid chromatography-mass spectrometry (LC-MS) was performed to identify the secondary metabolites in the ethanol and ethyl acetate extracts, followed by in silico techniques to predict molecular targets and interactions, safety, and pharmacokinetic profile for identified metabolites. Out of the eight extracts, the ethanolic extract of Z. nummularia, exhibited the most potent activity against KAIMRC2 cells with an IC50 value of 29.2 µg/ml. Cancer cell treatment with the ethanolic extract of Z. nummularia resulted in a dose-dependent decrease in cell viability with increased apoptosis and cytotoxic effects. Microtubule staining showed a disrupted microtubular network. The ethanolic extract treatment of KAIMRC2 cells led to upregulated expression of pAKT and pmTOR. In silico studies predicted luteolin-7-O-glucoside to be a ligand for tubulin with the highest docking score (- 7.686) and similar binding interactions relative to the native ligand. Further computational analysis of the metabolites showed acceptable pharmacokinetic and safety profiles, although ethanolic extract metabolites were predicted to have cardiotoxic effects. Ethanolic extraction is optimal for solubilizing active anticancer metabolites from Z. nummularia, which may act by causing M-phase arrest via inhibition of tubulin polymerization. Luteolin-7-O-glucoside is the lead candidate for further research and development as an anti-cancer agent. In addition, this study suggests that herbal treatment could switch on mechanisms of adaptation and survival in cancer cells.


Assuntos
Acetatos , Glucosídeos , Luteolina , Neoplasias , Ziziphus , Extratos Vegetais/farmacologia , Ziziphus/química , Moduladores de Tubulina , Ligantes , Tubulina (Proteína) , Etanol
8.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046823

RESUMO

Aberrant gene expression is often linked to the progression of various cancers, making the targeting of oncogene transcriptional activation a potential strategy to control tumor growth and development. The RET proto-oncogene's gain-of-function mutation is a major cause of medullary thyroid carcinoma (MTC), which is part of multiple endocrine neoplasia type 2 (MEN2) syndrome. In this study, we used a cell-based bioluminescence reporter system driven by the RET promoter to screen for small molecules that potentially suppress the RET gene transcription. We identified adefovir dipivoxil as a transcriptional inhibitor of the RET gene, which suppressed endogenous RET protein expression in MTC TT cells. Adefovir dipivoxil also interfered with STAT3 phosphorylation and showed high affinity to bind to STAT3. Additionally, it inhibited RET-dependent TT cell proliferation and increased apoptosis. These results demonstrate the potential of cell-based screening assays in identifying transcriptional inhibitors for other oncogenes.

9.
Int J Nanomedicine ; 18: 2141-2162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131545

RESUMO

Introduction: Biogenic silver nanoparticles (AgNPs) may be a feasible therapeutic option in the research and development towards selectively targeting specific cancers and microbial infections, lending a role in precision medicine. In-silico methods are a viable strategy to aid in drug discovery by identifying lead plant bioactive molecules for further wet lab and animal experiments. Methods: Green synthesis of M-AgNPs was performed using the aqueous extract from the Malvaviscus arboreus leaves, characterized using UV spectroscopy, FTIR, TEM, DLS, and EDS. In addition, Ampicillin conjugated M-AgNPs were also synthesized. The cytotoxic potential of the M-AgNPs was evaluated using the MTT assay on MDA-MB 231, MCF10A, and HCT116 cancer cell lines. The antimicrobial effects were determined using the agar well diffusion assay on methicillin-resistant S. aureus (MRSA) and S. mutans, E. coli, and Klebsiella pneumoniae. Additionally, LC-MS was used to identify the phytometabolites, and in silico techniques were applied to determine the pharmacodynamic and pharmacokinetic profiles of the identified metabolites. Results: Spherical M-AgNPs were successfully biosynthesized with a mean diameter of 21.8 nm and were active on all tested bacteria. Conjugation with ampicillin increased the susceptibility of the bacteria. These antibacterial effects were most predominant in Staphylococcus aureus (p < 0.0001). M-AgNPs had potent cytotoxic activity against the colon cancer cell line (IC50=29.5 µg/mL). In addition, four secondary metabolites were identified, Astragalin, 4-hydroxyphenyl acetic acid, Caffeic acid, and Vernolic acid. In silico studies identified Astragalin as the most active antibacterial and anti-cancer metabolite, binding strongly to the carbonic anhydrase IX enzyme with a comparatively higher number of residual interactions. Discussion: Synthesis of green AgNPs presents a new opportunity in the field of precision medicine, the concept centered on the biochemical properties and biological effects of the functional groups present in the plant metabolites used for reduction and capping. M-AgNPs may be useful in treating colon carcinoma and MRSA infections. Astragalin appears to be the optimal and safe lead for further anti-cancer and anti-microbial drug development.


Assuntos
Neoplasias do Colo , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Animais , Medicina de Precisão , Prata/farmacologia , Escherichia coli , Ampicilina , Antibacterianos/farmacologia , Bactérias , Extratos Vegetais/farmacologia , Testes de Sensibilidade Microbiana
10.
Front Pharmacol ; 14: 1169812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197407

RESUMO

There is no first-line treatment for vitiligo, a skin disease characterized by a lack of melanin produced by the melanocytes, resulting in an urgent demand for new therapeutic drugs capable of stimulating melanocyte functions, including melanogenesis. In this study, traditional medicinal plant extracts were tested for cultured human melanocyte proliferation, migration, and melanogenesis using MTT, scratch wound-healing assays, transmission electron microscopy, immunofluorescence staining, and Western blot technology. Of the methanolic extracts, Lycium shawii L. (L. shawii) extract increased melanocyte proliferation at low concentrations and modulated melanocyte migration. At the lowest tested concentration (i.e., 7.8 µg/mL), the L. shawii methanolic extract promoted melanosome formation, maturation, and enhanced melanin production, which was associated with the upregulation of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1 and TRP-2 melanogenesis-related proteins, and melanogenesis-related proteins. After the chemical analysis and L. shawii extract-derived metabolite identification, the in silico studies revealed the molecular interactions between Metabolite 5, identified as apigenin (4,5,6-trihydroxyflavone), and the copper active site of tyrosinase, predicting enhanced tyrosinase activity and subsequent melanin formation. In conclusion, L. shawii methanolic extract stimulates melanocyte functions, including melanin production, and its derivative Metabolite 5 enhances tyrosinase activity, suggesting further investigation of the L. shawii extract-derived Metabolite 5 as a potential natural drug for vitiligo treatment.

11.
Plants (Basel) ; 11(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214883

RESUMO

Neurodegenerative diseases (NDs) are one of the most challenging public health issues. Despite tremendous advances in our understanding of NDs, little progress has been made in establishing effective treatments. Natural products may have enormous potential in preventing and treating NDs by targeting microglia; yet, there have been several clinical concerns about their usage, primarily due to a lack of scientific evidence for their efficacy, molecular targets, physicochemical properties, and safety. To solve this problem, the secondary bioactive metabolites derived from neuroprotective medicinal plants were identified and selected for computational predictions for anti-inflammatory activity, possible molecular targets, physicochemical properties, and safety evaluation using PASS online, Molinspiration, SwissADME, and ProTox-II, respectively. Most of the phytochemicals were active as anti-inflammatory agents as predicted using the PASS online webserver. Moreover, the molecular target predictions for some phytochemicals were similar to the reported experimental targets. Moreover, the phytochemicals that did not violate important physicochemical properties, including blood-brain barrier penetration, GI absorption, molecular weight, and lipophilicity, were selected for further safety evaluation. After screening 54 neuroprotective phytochemicals, our findings suggest that Aromatic-turmerone, Apocynin, and Matrine are the most promising compounds that could be considered when designing novel neuroprotective agents to treat neurodegenerative diseases via modulating microglial polarization.

12.
Biomed Pharmacother ; 150: 113008, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489282

RESUMO

INTRODUCTION AND PURPOSE: In silico approach helps develop biomedicines and is useful for exploring the pharmacology of potential therapeutics using computer-simulated models. In vitro assays were used to determine the anti-microbial and cytotoxic efficacies of silver nanoparticles (AgNPs) synthesized with the shrub Lycium shawii. METHODS: In silico predicting was performed to assess the L. shawii metabolites identified using QTOF-LCMS for their pharmacological properties. L. shawii mediated AgNPs were synthesized and characterized (FTIR, TEM, SEM, DLS and EDX). The anti-bacterial efficacies of L. shawii extract, AgNPs, and penicillin-conjugated AgNPs (pen-AgNPs) were determined. The cytotoxicity of the AgNPs was measured against colorectal cancer cell line (HCT116), normal breast epithelium (MCF 10 A), and breast cancer cell line (MDA MB 231). RESULTS AND DISCUSSION: Five molecules (costunolide, catechin, emodin, lyciumaside, and aloe emodin 11-O-rhamnoside) were detected in the L. shawii extract. AgNPs (69 nm) were spherical with crystallographic structure. All three agents prepared showed inhibitory activity against the tested bacteria, the most efficacious being pen-AgNPs. High cytotoxicity of AgNPs (IC50 62 µg/ml) was observed against HCT116, IC50 was 78 µg/ml for MCF 10 A, and 250 µg/ml for MDA MB 231, of which cells showed apoptotic features under TEM examination. The in silico approach indicated that the carbonic anhydrase IX enzyme was the target molecule mediating anti-cancer and anti-bacterial activities and that emodin was the metabolite in action. CONCLUSIONS: Combining in vitro studies and in silico molecular target prediction helps find novel therapeutic agents. Among L. shawii metabolites, emodin is suggested for further studies as an agent for drug development against pathogenic bacteria and cancer.


Assuntos
Emodina , Lycium , Nanopartículas Metálicas , Antibacterianos/farmacologia , Bactérias , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia
13.
Metabolites ; 12(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36355104

RESUMO

The bark extract of Rhizophora mucronata (BERM) was recently reported for its prominent in vitro protective effects against liver cell line toxicity caused by various toxicants, including ethanol. Here, we aimed to verify the in vivo hepatoprotective effects of BERM against ethanol intoxication with the prediction of potential targets employing in silico studies. An oral administration of different concentrations (100, 200 and 400 mg/kg body weight) of BERM before high-dose ethanol via intraperitoneal injection was performed in mice. On day 7, liver sections were dissected for histopathological examination. The ethanol intoxication caused liver injury and large areas of necrosis. The pre-BERM administration decreased the ethanol-induced liver damage marker tumor necrosis factor-alpha (TNF-α) expression, reduced hepatotoxicity revealed by nuclear deoxyribonucleic acid (DNA) fragmentation and decreased oxidative stress indicated by malondialdehyde and glutathione contents. Our in silico studies have identified BERM-derived metabolites exhibiting the highest predicted antioxidant and free radical scavenger activities. Molecular docking studies showed that most of the metabolites were predicted to be enzyme inhibitors such as carbonic anhydrase inhibitors, which were reported to stimulate the antioxidant defense system. The metabolites predominantly presented acceptable pharmacokinetics and safety profiles, suggesting them as promising new antioxidant agents. Altogether, the BERM extract exerts antioxidative activities and shows promising hepatoprotective effects against ethanol intoxication. Identification of related bioactive compounds will be of interest for future use at physiological concentrations in ethanol-intoxicated individuals.

14.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36015092

RESUMO

BACKGROUND: Myrrh extract is a well-known medicinal plant with significant therapeutic benefits attributed to the activity of its diverse metabolites. It has promising activity against cancer and inflammatory diseases, and could serve as a potential therapeutic alternative since most therapeutic agents have severe side effects that impair quality of life. METHOD: The current study identified the active metabolites from the myrrh resin methanolic extract. Then, the extracts were tested for in vitro anti-inflammatory and anti-cancer activity using cancer cell lines and Tamm-Horsfall Protein 1 (Thp-1)-like macrophage cell lines. Furthermore, using an in vivo rat model, the extracts' anti-inflammatory and wound-healing activity was investigated. In addition, in silico predictions of the myrrh constituents highlighted the pharmacokinetic properties, molecular targets, and safety profile, including cytochrome P 450 (CYP) inhibition and organ toxicity. RESULTS: Nine secondary metabolites were identified, and computational predictions suggested a good absorption profile, anticancer, anti-inflammatory, and wound-healing effects. The myrrh extract had moderate cytotoxic activity against both HL60 and K562 leukemia cell lines and the KAIMRC1 breast cancer cell line. Myrrh caused a dose-dependent effect on macrophages to increase the reactive oxygen species (ROS) levels, promote their polarization to classically activated macrophages (M1) and alternatively activated macrophages (M2) phenotypes, and consequently induce apoptosis, highlighting its ability to modulate macrophage function, which could potentially aid in several desired therapeutic processes, including the resolution of inflammation, and autophagy which is an important aspect to consider in cancer treatment. The topical application of myrrh improved wound healing, with no delayed inflammatory response, and promoted complete re-epithelization of the skin, similar to the positive control. In conclusion, we provide evidence for the methanolic extract of myrrh having cytotoxic activity against cancer cells and anti-inflammatory wound-healing properties, which may be attributed to its role in modulating macrophage function. Furthermore, we suggest the active constituents responsible for these properties, which warrants further studies focusing on the precise roles of the active metabolites.

15.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145281

RESUMO

The aggressive triple-negative breast cancer (TNBC) is a challenging disease due to the absence of tailored therapy. The search for new therapies involves intensive research focusing on natural sources. Achillea fragrantissima (A. fragrantissima) is a traditional medicine from the Middle East region. Various solvent extracts from different A. fragrantissima plant parts, including flowers, leaves, and roots, were tested on TNBC MDA-MB-231 cells. Using liquid chromatography, the fingerprinting revealed rich and diverse compositions for A. fragrantissima plant parts using polar to non-polar solvent extracts indicating possible differences in bioactivities. Using the CellTiter-Glo™ viability assay, the half-maximal inhibitory concentration (IC50) values were determined for each extract and ranged from 32.4 to 161.7 µg/mL. The A. fragrantissima flower dichloromethane extract had the lowest mean IC50 value and was chosen for further investigation. Upon treatment with increasing A. fragrantissima flower dichloromethane extract concentrations, the MDA-MB-231 cells displayed, in a dose-dependent manner, enhanced morphological and biochemical hallmarks of apoptosis, including cell shrinkage, phosphatidylserine exposure, caspase activity, and mitochondrial outer membrane permeabilization, assessed using phase-contrast microscopy, fluorescence-activated single-cell sorting analysis, Image-iT™ live caspase, and mitochondrial transition pore opening activity, respectively. Anticancer target prediction and molecular docking studies revealed the inhibitory activity of a few A. fragrantissima flower dichloromethane extract-derived metabolites against carbonic anhydrase IX, an enzyme reported for its anti-apoptotic properties. In conclusion, these findings suggest promising therapeutic values of the A. fragrantissima flower dichloromethane extract against TNBC development.

16.
Drug Des Devel Ther ; 15: 3289-3312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354342

RESUMO

Various imidazole-containing compounds have been tested for their medical usefulness in clinical trials for several disease conditions. The rapid expansion of imidazole-based medicinal chemistry suggests the promising and potential therapeutic values of imidazole-derived compounds for treating incurable diseases. Imidazole core scaffold contains three carbon atoms, and two nitrogen with electronic-rich characteristics that are responsible for readily binding with a variety of enzymes, proteins, and receptors compared to the other heterocyclic rings. Herein, we provide a thorough overview of the current research status of imidazole-based compounds with a wide variety of biological activities including anti-cancer, anti-microbial, anti-inflammatory and their potential mechanisms including topoisomerase IIR catalytic inhibition, focal adhesion kinase (FAK) inhibition, c-MYC G-quadruplex DNA stabilization, and aurora kinase inhibition. Additionally, a great interest was reported in the discovery of novel imidazole compounds with anti-microbial properties that break DNA double-strand helix and inhibit protein kinase. Moreover, anti-inflammatory mechanisms of imidazole derivatives include inhibition of COX-2 enzyme, inhibit neutrophils degranulation, and generation of reactive oxygen species. This systemic review helps to design and discover more potent and efficacious imidazole compounds based on the reported derivatives, their ADME profiles, and bioavailability scores that together aid to advance this class of compounds.


Assuntos
Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Química Farmacêutica , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética
17.
Drug Des Devel Ther ; 15: 4195-4211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675483

RESUMO

BACKGROUND: Fenugreek, also known as Trigonella foenum-graecum L, is a natural plant that belongs to the Fabaceae family and has been known as a promising source of bioactive compounds. It has been widely used as traditional medicine since it has shown to lower blood glucose, manage cholesterol levels and further aid in the prevention and treatment of cancer. Herein, we aim to evaluate the anticancer activity of methanolic fenugreek seed extract against several cancer cell lines. METHODS: We sought to investigate the phytochemical classes present in multiple fenugreek seeds extracts using HPLC-DAD followed by LC/MS, predict and investigate anticancer activity using PASS online webserver, the CellTiter-Glo assay, evaluate ADME properties, and perform molecular docking for all bioactive compounds via Maestro software. RESULTS: Multiple extracts exhibited distinct phytochemical classes that demonstrated different biological activities. Fenugreek methanolic extract contains flavonoid chemical class, which showed the highest anticancer activity against the HCT8 cell line of colorectal cancer (IC50 of 8.83 µg/mL), followed by KAIMRC1 breast cancer cell line (IC50 of 35.06 µg/mL), HL60 leukemia cell line (37.80 µg/mL), MDA-MB-231 breast cancer cell line (38.51 µg/mL), and lastly, HCT116 colorectal cancer cell line with IC50 of 56.03 µg/mL. In contrast, the chloroform extract was inactive. The molecular docking study for all the bioactive compounds suggested that flavonoids F6 (-9.713 and -12.132), F7 (-10.166 and -12.411), and F11 (-10.084 and -13.516) possess the highest docking scores through SP and XP scores, respectively. CONCLUSION: The obtained results confirm that the bioactive compounds present in fenugreek seeds exhibit anticancer activity against several cancer cells that can mediate via tubulin polymerization inhibition. Although our study has evaluated the anticancer potential of Trigonella foenum-graecum as a promising natural source for new anticancer agents, fenugreek biological activity needs further research and investigations on their mechanism of action and toxicity profile.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Moduladores de Tubulina/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Simulação de Acoplamento Molecular , Neoplasias/patologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Trigonella/química , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/administração & dosagem , Moduladores de Tubulina/química
18.
J Adv Pharm Technol Res ; 12(4): 430-434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820321

RESUMO

Heavy metal impurities in cosmetics are common due to their natural abundance. However, they should be kept to a minimum wherever technically feasible. Although human external contact with a substance rarely results in a significant systemic exposure, local exposure to cosmetics may pose a risk of heavy metal contamination. In this study, we sought to investigate the heavy metal concentration present in various cosmetic products from different brands and qualities that are available in the Saudi Market, also to analyze and compare the determined values relative to the reported permissible levels according to international standards. In this study, we have selected several facial cosmetics from the Saudi market and classified their quality into three main classifications based on their price. This was followed by an analysis and reporting of heavy metal content using an inductively coupled plasma-mass spectrometer. We found that three metals were below the permissible limits (Pb, As, and Cd) for cosmetics according to the Saudi Food and Drug Administration and Canadian Standards, besides (Cr) which was also below the limit of the United States Food and Drug Administration. The level of (Ni) exceeded the recommended range in the three-class classifications. On contrary, Pb, Cr, As, and Cd have all exceeded the acceptable levels based on European standards. Further assessment and careful selection of heavy metals content in cosmetics are urgently needed, as there are fluctuations in values between different international standards which might pose a potential harmful effect to human health from the daily use of cosmetics containing heavy metals impurities.

19.
Sci Rep ; 11(1): 4760, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637771

RESUMO

Soil is considered an extensively explored ecological niche for microorganisms that produce useful biologically active natural products suitable for pharmaceutical applications. The current study aimed at investigating biological activities and metabolic profiles of three fungal strains identified from different desert sites in Saudi Arabia. Soil fungal isolates were collected from AlQasab, Tabuk, and Almuzahimiyah in Saudi Arabia and identified. Furthermore, their antibacterial activity was investigated against Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, and Escherichia coli in blood, nutrient, and Sabouraud dextrose agars. Moreover, fungal extracts were evaluated on cell viability/proliferation against human breast carcinoma and colorectal adenocarcinoma cells. To identify the biomolecules of the fungal extracts, High-performance liquid chromatography HPLC-DAD coupled to analytical LC-QTOF-MS method was employed for fungal ethyl acetate crude extract. Identified fungal isolates, Chaetomium sp. Bipolaris sp. and Fusarium venenatum showed varied inhibitory activity against tested microbes in relation to crude extract, microbial strain tested, and growth media. F. venenatum showed higher anticancer activity compared to Chaetomium sp. and Bipolaris sp. extracts against four of the tested cancer cell lines. Screening by HPLC and LC/MS-QTOF identified nine compounds from Chaetomium sp. and three from Bipolaris sp. however, for F. venenatum extracts compounds were not fully identified. In light of the present findings, some biological activities of fungal extracts were approved in vitro, suggesting that such extracts could be a useful starting point to find compounds that possess promising agents for medical applications. Further investigations to identify exact biomolecules from F. venenatum extracts are needed.


Assuntos
Bipolaris/metabolismo , Chaetomium/metabolismo , Fusarium/metabolismo , Metaboloma , Microbiologia do Solo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bipolaris/química , Linhagem Celular Tumoral , Chaetomium/química , Cromatografia Líquida de Alta Pressão , Clima Desértico , Descoberta de Drogas , Fusarium/química , Humanos , Espectrometria de Massas , Arábia Saudita
20.
Plants (Basel) ; 10(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070945

RESUMO

BACKGROUND: Aloe perryi is a traditional herb that has various biological and pharmacological properties such as anti-inflammatory, laxative, antiviral, antidiabetic, and antitumor effects, which have not been deliberated before. The current investigation aims to evaluate in vitro cytotoxicity against several cancer cell lines in addition to in vivo anti-inflammatory activities of Aloe perryi extract using a rat animal model. Moreover, the pharmacokinetic properties of bioactive constituents and possible biological targets were assessed and evaluated. The methanolic extract of Aloe perryi was prepared by maceration, to tentatively identify the biomolecules of the Aloe perryi extract, analytical LC-QTOF-MS method was employed for Aloe perryi methanolic extract. The cytotoxic activity was examined in six cancer cell lines using Titer-Glo assay and the IC50s were calculated in addition to in silico target predictions and in vivo anti-inflammatory activity assessment. Subsequently, the pharmacokinetics of the identified active components of Aloe perryi were predicted using SwissADME, and target prediction using the Molinspiration webserver. The cytotoxic activity on HL60 and MDA-MB-231 was moderately affected by the Aloe perryi extract with IC50 of 63.81, and 89.85 µg/ml, respectively, with no activity on other cells lines. Moreover, the Aloe perryi extract exhibited a significant increase in wound contraction, hair growth, and complete re-epithelization when compared with the negative control. The pharmacokinetic properties of the bioactive constituents suggested a good pharmaceutical profile for the active compounds and nuclear receptors and enzymes were the two main possible targets for these active compounds. Our results demonstrated the promising activity of Aloe perryi extract with cytotoxic and anti-inflammatory properties, indicating a potential therapeutic utility of this plant in various disease conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA