RESUMO
Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Ativação Transcricional , Nucleotidiltransferases/metabolismo , Complexo Mediador/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismoRESUMO
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry. Canonical members of the NMD pathway were found along with numerous NMD candidate factors, including conserved DEA(D/H)-box RNA helicase homologs of human DDX3, DDX5 and DDX6, translation initiation factors, ribosomal proteins and transport factors. Our functional studies revealed that depletion of DDX3 helicases enhances the accumulation of NMD target reporter mRNAs but does not result in increased protein levels. In contrast, silencing of DDX6 group leads to decreased accumulation of the NMD substrate. The inhibitory effect of DDX6-like helicases on NMD was confirmed by transient overexpression of RH12 helicase. These results indicate that DDX3 and DDX6 helicases in plants have a direct and opposing contribution to NMD and act as functional NMD factors.
Assuntos
Proteínas de Arabidopsis/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , RNA Helicases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Códon sem Sentido , RNA Helicases DEAD-box , Regulação da Expressão Gênica de Plantas , Humanos , Folhas de Planta/metabolismo , Proteínas Proto-Oncogênicas , RNA Helicases/genética , RNA Mensageiro , Homologia de Sequência , Nicotiana/genéticaRESUMO
The proper gene expression required precise and strictly controlled mechanisms, which allows to remove damaged and unnecessary transcripts. One of the most important quality control mechanism is Nonsense-Mediated mRNA Decay (NMD). The evolutionary conserved process prevents the production of potentially harmful proteins by eliminating aberrant mRNAs carrying premature translation termination codons (PTC). Extensive studies in yeast, C. elegans, flies and mammals established a whole set of additional NMD substrates, not only aberrant transcripts, but physiological mRNAs, noncoding RNAs, genes coding miRNA and snoRNA. It seems that the NMD process is related to development and response to different stresses. Moreover, recent studies regarding the identification of new protein factors involved in NMD mechanism show the wide complexity of this process.
Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Caenorhabditis elegans , RNA MensageiroRESUMO
Liverworts are the most basal group of extant land plants. Nonetheless, the molecular biology of liverworts is poorly understood. Gene expression has been studied in only one species, Marchantia polymorpha. In particular, no microRNA (miRNA) sequences from liverworts have been reported. Here, Illumina-based next-generation sequencing was employed to identify small RNAs, and analyze the transcriptome and the degradome of Pellia endiviifolia. Three hundred and eleven conserved miRNA plant families were identified, and 42 new liverwort-specific miRNAs were discovered. The RNA degradome analysis revealed that target mRNAs of only three miRNAs (miR160, miR166, and miR408) have been conserved between liverworts and other land plants. New targets were identified for the remaining conserved miRNAs. Moreover, the analysis of the degradome permitted the identification of targets for 13 novel liverwort-specific miRNAs. Interestingly, three of the liverwort microRNAs show high similarity to previously reported miRNAs from Chlamydomonas reinhardtii. This is the first observation of miRNAs that exist both in a representative alga and in the liverwort P. endiviifolia but are not present in land plants. The results of the analysis of the P. endivifolia microtranscriptome support the conclusions of previous studies that placed liverworts at the root of the land plant evolutionary tree of life.
Assuntos
Hepatófitas/genética , Transcriptoma , Sequência de Bases , Clorófitas/genética , Embriófitas/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Dados de Sequência Molecular , RNA Mensageiro/genética , Análise de Sequência de RNARESUMO
Defects in RNA processing and degradation pathways often lead to developmental abnormalities, impaired hormonal signaling and altered resistance to abiotic and biotic stress. Here we report that components of the 5'-3' mRNA decay pathway, DCP5, LSM1-7 and XRN4, contribute to a proper response to a key plant hormone abscisc acid (ABA), albeit in a different manner. Plants lacking DCP5 are more sensitive to ABA during germination, whereas lsm1a lsm1b and xrn4-5 mutants are affected at the early stages of vegetative growth. In addition, we show that DCP5 and LSM1 regulate mRNA stability and act in translational repression of the main components of the early ABA signaling, PYR/PYL ABA receptors and SnRK2s protein kinases. mRNA decapping DCP and LSM1-7 complexes also appear to modulate ABA-dependent expression of stress related transcription factors from the AP2/ERF/DREB family that in turn affect the level of genes regulated by the PYL/PYR/RCAR-PP2C-SnRK2 pathway. These observations suggest that ABA signaling through PYL/PYR/RCAR receptors and SnRK2s kinases is regulated directly and indirectly by the cytoplasmic mRNA decay pathway.