RESUMO
RATIONALE: Androgen deprivation therapy (ADT) is an effective treatment for prostate cancer, but induces profound cognitive impairment. Little research has addressed mechanisms underlying these deficits or potential treatments. This is an unmet need to improve quality of life for prostate cancer survivors. OBJECTIVES: We investigated mechanisms of cognitive impairment after ADT in rats and potential utility of the multimodal serotonin-targeting drug, vortioxetine, to improve the impairment, as vortioxetine has specific efficacy against cognitive impairment in depression. METHODS: Male Sprague-Dawley rats were surgically castrated. Vortioxetine (28 mg/kg/day) was administered in the diet. The attentional set-shifting test was used to assess medial prefrontal cortex (mPFC) executive function. Afferent-evoked field potentials were recorded in the mPFC of anesthetized rats after stimulating the ventral hippocampus (vHipp) or medial dorsal thalamus (MDT). Gene expression changes were assessed by microarray. Effects of vortioxetine on growth of prostate cancer cells were assessed in vitro. RESULTS: ADT impaired cognitive set shifting and attenuated responses evoked in the mPFC by the vHipp afferent, but not the MDT. Both the cognitive impairment and attenuated vHipp-evoked responses were reversed by chronic vortioxetine treatment. Preliminary investigation of gene expression in the mPFC indicates that factors involved in neuronal plasticity and synaptic transmission were down-regulated by castration and up-regulated by vortioxetine in castrated animals. Vortioxetine neither altered the growth of prostate cancer cells in vitro nor interfered with the antiproliferative effects of the androgen antagonist, enzalutamide. CONCLUSIONS: These results suggest that vortioxetine may be useful in mitigating cognitive impairment associated with ADT for prostate cancer.