Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(1): 113-130.e15, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34921774

RESUMO

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

2.
Nat Immunol ; 19(1): 20-28, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29199281

RESUMO

Emerging infectious diseases will continue to threaten public health and are sustained by global commerce, travel and disruption of ecological systems. Most pandemic threats are caused by viruses from either zoonotic sources or vector-borne sources. Developing better ways to anticipate and manage the ongoing microbial challenge will be critical for achieving the United Nations Sustainable Development Goals and, conversely, each such goal will affect the ability to control infectious diseases. Here we discuss how technology can be applied effectively to better prepare for and respond to new viral diseases with a focus on new paradigms for vaccine development.


Assuntos
Doenças Transmissíveis Emergentes/imunologia , Vacinação/métodos , Vacinas Virais/imunologia , Viroses/imunologia , Animais , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/virologia , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Pandemias/prevenção & controle , Saúde Pública/métodos , Vacinas Virais/uso terapêutico , Viroses/epidemiologia , Viroses/prevenção & controle
3.
Immunity ; 54(3): 412-436, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33691133

RESUMO

The 2014 Ebola virus disease (EVD) outbreak in West Africa and the subsequent outbreaks of 2018-2020 in Equator and North Kivu provinces of the Democratic Republic of the Congo illustrate the public health challenges of emerging and reemerging viruses. EVD has a high case fatality rate with a rapidly progressing syndrome of fever, rash, vomiting, diarrhea, and bleeding diathesis. Recently, two monoclonal-antibody-based therapies received United States Food and Drug Administration (FDA) approval, and there are several other passive immunotherapies that hold promise as therapeutics against other species of Ebolavirus. Here, we review concepts needed to understand mechanisms of action, present an expanded schema to define additional sites of vulnerability on the viral glycoprotein, and review current antibody-based therapeutics. The concepts described are used to gain insights into the key characteristics that represent functional targets for immunotherapies against Zaire Ebolavirus and other emerging viruses within the Ebolavirus genus.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/terapia , Imunização Passiva/métodos , Animais , Doença pelo Vírus Ebola/imunologia , Humanos , Estados Unidos , United States Food and Drug Administration , Proteínas Virais de Fusão/imunologia
4.
Immunity ; 54(8): 1869-1882.e6, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270939

RESUMO

Vaccine-associated enhanced respiratory disease (VAERD) was previously observed in some preclinical models of severe acute respiratory syndrome (SARS) and MERS coronavirus vaccines. We used the SARS coronavirus 2 (SARS-CoV-2) mouse-adapted, passage 10, lethal challenge virus (MA10) mouse model of acute lung injury to evaluate the immune response and potential for immunopathology in animals vaccinated with research-grade mRNA-1273. Whole-inactivated virus or heat-denatured spike protein subunit vaccines with alum designed to elicit low-potency antibodies and Th2-skewed CD4+ T cells resulted in reduced viral titers and weight loss post challenge but more severe pathological changes in the lung compared to saline-immunized animals. In contrast, a protective dose of mRNA-1273 induced favorable humoral and cellular immune responses that protected from viral replication in the upper and lower respiratory tract upon challenge. A subprotective dose of mRNA-1273 reduced viral replication and limited histopathological manifestations compared to animals given saline. Overall, our findings demonstrate an immunological signature associated with antiviral protection without disease enhancement following vaccination with mRNA-1273.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Interações Hospedeiro-Patógeno/imunologia , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Biópsia , Vacinas contra COVID-19/administração & dosagem , Modelos Animais de Doenças , Humanos , Imunoglobulina G , Imuno-Histoquímica , Camundongos , Avaliação de Resultados em Cuidados de Saúde , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA
5.
Immunity ; 54(4): 769-780.e6, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33823129

RESUMO

An effective vaccine for respiratory syncytial virus (RSV) is an unrealized public health goal. A single dose of the prefusion-stabilized fusion (F) glycoprotein subunit vaccine (DS-Cav1) substantially increases serum-neutralizing activity in healthy adults. We sought to determine whether DS-Cav1 vaccination induces a repertoire mirroring the pre-existing diversity from natural infection or whether antibody lineages targeting specific epitopes predominate. We evaluated RSV F-specific B cell responses before and after vaccination in six participants using complementary B cell sequencing methodologies and identified 555 clonal lineages. DS-Cav1-induced lineages recognized the prefusion conformation of F (pre-F) and were genetically diverse. Expressed antibodies recognized all six antigenic sites on the pre-F trimer. We identified 34 public clonotypes, and structural analysis of two antibodies from a predominant clonotype revealed a common mode of recognition. Thus, vaccination with DS-Cav1 generates a diverse polyclonal response targeting the antigenic sites on pre-F, supporting the development and advanced testing of pre-F-based vaccines against RSV.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Criança , Pré-Escolar , Estudos de Coortes , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Proteínas Virais de Fusão/imunologia , Adulto Jovem
6.
Cell ; 159(3): 477-86, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417101

RESUMO

Ebolaviruses cause a severe hemorrhagic fever syndrome that is rapidly fatal to humans and nonhuman primates. Ebola protein interactions with host cellular proteins disrupt type I and type II interferon responses, RNAi antiviral responses, antigen presentation, T-cell-dependent B cell responses, humoral antibodies, and cell-mediated immunity. This multifaceted approach to evasion and suppression of innate and adaptive immune responses in their target hosts leads to the severe immune dysregulation and "cytokine storm" that is characteristic of fatal ebolavirus infection. Here, we highlight some of the processes by which Ebola interacts with its mammalian hosts to evade antiviral defenses.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Evasão da Resposta Imune , Tolerância Imunológica , Citocinas/imunologia , Imunidade Humoral , Proteínas Virais/metabolismo , Internalização do Vírus
7.
Proc Natl Acad Sci U S A ; 121(7): e2316960121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319964

RESUMO

The Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV)-one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here, we describe a universal Ebola virus vaccine approach using a structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Vacinas Virais , Humanos , Animais , Camundongos , Anticorpos Antivirais , Anticorpos Neutralizantes , Soros Imunes
8.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709074

RESUMO

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Assuntos
Adenovirus dos Símios , Marburgvirus , Animais , Adulto , Humanos , Pan troglodytes , Anticorpos Antivirais , Vacinas Sintéticas/efeitos adversos , Adenoviridae , Glicoproteínas , Método Duplo-Cego
9.
N Engl J Med ; 384(13): 1240-1247, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33789012

RESUMO

During the 2018-2020 Ebola virus disease (EVD) outbreak in North Kivu province in the Democratic Republic of Congo, EVD was diagnosed in a patient who had received the recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) (Merck). His treatment included an Ebola virus (EBOV)-specific monoclonal antibody (mAb114), and he recovered within 14 days. However, 6 months later, he presented again with severe EVD-like illness and EBOV viremia, and he died. We initiated epidemiologic and genomic investigations that showed that the patient had had a relapse of acute EVD that led to a transmission chain resulting in 91 cases across six health zones over 4 months. (Funded by the Bill and Melinda Gates Foundation and others.).


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/transmissão , Adulto , Teorema de Bayes , República Democrática do Congo/epidemiologia , Vacinas contra Ebola/imunologia , Ebolavirus/isolamento & purificação , Evolução Fatal , Genoma Viral , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/terapia , Humanos , Masculino , Mutação , Filogenia , RNA Viral/sangue , Recidiva
11.
J Infect Dis ; 228(Suppl 6): S446-S459, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849404

RESUMO

Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.


Assuntos
Ebolavirus , Filoviridae , Doença pelo Vírus Ebola , Marburgvirus , Animais , Humanos , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Surtos de Doenças
12.
PLoS Pathog ; 17(4): e1009431, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33831133

RESUMO

Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH2-terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting.


Assuntos
COVID-19 , Epitopos , Imunidade Humoral , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19/genética , COVID-19/imunologia , Linhagem Celular , Epitopos/genética , Epitopos/imunologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
13.
J Arthroplasty ; 38(11): 2193-2201, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778918

RESUMO

OBJECTIVE: To develop evidence-based consensus recommendations for the optimal timing of hip and knee arthroplasty to improve patient-important outcomes including, but not limited to, pain, function, infection, hospitalization, and death at 1 year for patients with symptomatic and radiographic moderate-to-severe osteoarthritis or advanced symptomatic osteonecrosis with secondary arthritis of the hip or knee who have previously attempted nonoperative therapy, and for whom nonoperative therapy was ineffective, and who have chosen to undergo elective hip or knee arthroplasty (collectively referred to as TJA). METHODS: We developed 13 clinically relevant population, intervention, comparator, outcomes (PICO) questions. After a systematic literature review, the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to rate the quality of evidence (high, moderate, low, or very low), and evidence tables were created. A Voting Panel, including 13 physicians and patients, discussed the PICO questions until consensus was achieved on the direction (for/against) and strength (strong/conditional) of the recommendations. RESULTS: The panel conditionally recommended against delaying TJA to pursue additional nonoperative treatment including physical therapy, nonsteroidal antiinflammatory drugs, ambulatory aids, and intraarticular injections. It conditionally recommended delaying TJA for nicotine reduction or cessation. The panel conditionally recommended delay for better glycemic control for patients who have diabetes mellitus, although no specific measure or level was identified. There was consensus that obesity by itself was not a reason for delay, but that weight loss should be strongly encouraged, and the increase in operative risk should be discussed. The panel conditionally recommended against delay in patients who have severe deformity or bone loss, or in patients who have a neuropathic joint. Evidence for all recommendations was graded as low or very low quality. CONCLUSION: This guideline provides evidence-based recommendations regarding the optimal timing of TJA in patients who have symptomatic and radiographic moderate-to-severe osteoarthritis or advanced symptomatic osteonecrosis with secondary arthritis for whom nonoperative therapy was ineffective to improve patient-important outcomes, including pain, function, infection, hospitalization, and death at 1 year. We acknowledge that the evidence is of low quality primarily due to indirectness and hope future research will allow for further refinement of the recommendations.


Assuntos
Artroplastia do Joelho , Osteoartrite do Quadril , Osteoartrite do Joelho , Osteoartrite , Reumatologia , Cirurgiões , Humanos , Osteoartrite do Quadril/complicações , Osteoartrite do Quadril/cirurgia , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/cirurgia , Dor , Estados Unidos
14.
Cogn Dev ; 582021.
Artigo em Inglês | MEDLINE | ID: mdl-33833479

RESUMO

Testing cognitive skill development is important for diagnostic, prognostic, and monitoring purposes, especially for young children and individuals with neurodevelopmental disorders. Developmental tests have been created for infants and toddlers, while traditional IQ tests are often employed beginning in the later preschool period. However, IQ tests rely on developmental skills that are rapidly changing during early childhood. Here, we introduce the idea of prerequisite skills in developmental domains, which are discrete skills required for, but not explicitly tested by, traditional IQ tests. Focusing on general cognition, particularly among children with a chronological or mental age under 4 years, may fail to capture important nuances in skill development. New skill-based assessments are needed in general, and in particular for categorization, which is foundational to higher-order cognitive skills. Novel measures quantifying categorization skills would provide a more sensitive measure of development for young children and older individuals with low developmental levels.

15.
Lancet ; 393(10174): 889-898, 2019 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-30686586

RESUMO

BACKGROUND: mAb114 is a single monoclonal antibody that targets the receptor-binding domain of Ebola virus glycoprotein, which prevents mortality in rhesus macaques treated after lethal challenge with Zaire ebolavirus. Here we present expedited data from VRC 608, a phase 1 study to evaluate mAb114 safety, tolerability, pharmacokinetics, and immunogenicity. METHODS: In this phase 1, dose-escalation study (VRC 608), conducted at the US National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA), healthy adults aged 18-60 years were sequentially enrolled into three mAb114 dose groups of 5 mg/kg, 25 mg/kg, and 50 mg/kg. The drug was given to participants intravenously over 30 min, and participants were followed for 24 weeks. Participants were only enrolled into increased dosing groups after interim safety assessments. Our primary endpoints were safety and tolerability, with pharmacokinetic and anti-drug antibody assessments as secondary endpoints. We assessed safety and tolerability in all participants who received study drug by monitoring clinical laboratory data and self-report and direct clinician assessment of prespecified infusion-site symptoms 3 days after infusion and systemic symptoms 7 days after infusion. Unsolicited adverse events were recorded for 28 days. Pharmacokinetic and anti-drug antibody assessments were completed in participants with at least 56 days of data. This trial is registered with ClinicalTrials.gov, number NCT03478891, and is active but no longer recruiting. FINDINGS: Between May 16, and Sept 27, 2018, 19 eligible individuals were enrolled. One (5%) participant was not infused because intravenous access was not adequate. Of 18 (95%) remaining participants, three (17%) were assigned to the 5 mg/kg group, five (28%) to the 25 mg/kg group, and ten (55%) to the 50 mg/kg group, each of whom received a single infusion of mAb114 at their assigned dose. All infusions were well tolerated and completed over 30-37 min with no infusion reactions or rate adjustments. All participants who received the study drug completed the safety assessment of local and systemic reactogenicity. No participants reported infusion-site symptoms. Systemic symptoms were all mild and present only in four (22%) of 18 participants across all dosing groups. No unsolicited adverse events occurred related to mAb114 and one serious adverse event occurred that was unrelated to mAb114. mAb114 has linear pharmacokinetics and a half-life of 24·2 days (standard error of measurement 0·2) with no evidence of anti-drug antibody development. INTERPRETATION: mAb114 was well tolerated, showed linear pharmacokinetics, and was easily and rapidly infused, making it an attractive and deployable option for treatment in outbreak settings. FUNDING: Vaccine Research Center, US National Institute of Allergy and Infectious Diseases, and NIH.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Fatores Imunológicos/imunologia , Fatores Imunológicos/farmacocinética , Proteínas Virais/imunologia , Administração Intravenosa , Adulto , Animais , Anticorpos Monoclonais/administração & dosagem , Relação Dose-Resposta a Droga , Vacinas contra Ebola/administração & dosagem , Feminino , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Fatores Imunológicos/administração & dosagem , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
N Engl J Med ; 376(10): 928-938, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-25426834

RESUMO

BACKGROUND: The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. METHODS: We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×1010 particle units or 2×1011 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. RESULTS: In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×1011 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×1011 particle-unit dose than in the group that received the 2×1010 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×1011 particle-unit dose than among those who received the 2×1010 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×1011 particle-unit dose. CONCLUSIONS: Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At the 2×1011 particle-unit dose, glycoprotein Zaire-specific antibody responses were in the range reported to be associated with vaccine-induced protective immunity in challenge studies involving nonhuman primates, and responses were sustained to week 48. Phase 2 studies and efficacy trials assessing cAd3-EBO are in progress. (Funded by the Intramural Research Program of the National Institutes of Health; VRC 207 ClinicalTrials.gov number, NCT02231866 .).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adenovirus dos Símios , Adulto , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Febre/etiologia , Vetores Genéticos , Glicoproteínas/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Pan troglodytes , Linfócitos T/fisiologia
17.
N Engl J Med ; 376(4): 330-341, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-25830322

RESUMO

BACKGROUND: The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. METHODS: We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. RESULTS: The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. CONCLUSIONS: This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV∆G-ZEBOV-GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408 .).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adulto , Anticorpos Antivirais/sangue , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Soroconversão , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana , Proteínas do Envelope Viral/isolamento & purificação , Viremia
19.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092584

RESUMO

We evaluated the contribution of CD8αß+ T cells to control of live-attenuated simian immunodeficiency virus (LASIV) replication during chronic infection and subsequent protection from pathogenic SIV challenge. Unlike previous reports with a CD8α-specific depleting monoclonal antibody (mAb), the CD8ß-specific mAb CD8ß255R1 selectively depleted CD8αß+ T cells without also depleting non-CD8+ T cell populations that express CD8α, such as natural killer (NK) cells and γδ T cells. Following infusion with CD8ß255R1, plasma viremia transiently increased coincident with declining peripheral CD8αß+ T cells. Interestingly, plasma viremia returned to predepletion levels even when peripheral CD8αß+ T cells did not. Although depletion of CD8αß+ T cells in the lymph node (LN) was incomplete, frequencies of these cells were 3-fold lower (P = 0.006) in animals that received CD8ß255R1 than in those that received control IgG. It is possible that these residual SIV-specific CD8αß+ T cells may have contributed to suppression of viremia during chronic infection. We also determined whether infusion of CD8ß255R1 in the LASIV-vaccinated animals increased their susceptibility to infection following intravenous challenge with pathogenic SIVmac239. We found that 7/8 animals infused with CD8ß255R1, and 3/4 animals infused with the control IgG, were resistant to SIVmac239 infection. These results suggest that infusion with CD8ß255R1 did not eliminate the protection afforded to LASIV vaccination. This provides a comprehensive description of the impact of CD8ß255R1 infusion on the immunological composition in cynomolgus macaques, compared to an isotype-matched control IgG, while showing that the control of LASIV viremia and protection from challenge can occur even after CD8ß255R1 administration.IMPORTANCE Studies of SIV-infected macaques that deplete CD8+ T cells in vivo with monoclonal antibodies have provided compelling evidence for their direct antiviral role. These studies utilized CD8α-specific mAbs that target both the major (CD8αß+) and minor (CD8αα+) populations of CD8+ T cells but additionally deplete non-CD8+ T cell populations that express CD8α, such as NK cells and γδ T cells. In the current study, we administered the CD8ß-specific depleting mAb CD8ß255R1 to cynomolgus macaques chronically infected with a LASIV to selectively deplete CD8αß+ T cells without removing CD8αα+ lymphocytes. We evaluated the impact on control of virus replication and protection from pathogenic SIVmac239 challenge. These results underscore the utility of CD8ß255R1 for studying the direct contribution of CD8αß+ T cells in various disease states.


Assuntos
Antígenos CD8/análise , Linfócitos T CD8-Positivos/imunologia , Depleção Linfocítica , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Subpopulações de Linfócitos T/imunologia , Replicação Viral , Animais , Macaca , Plasma/virologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Carga Viral
20.
J Immunol ; 201(3): 833-842, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30038036

RESUMO

Zaire ebolavirus (EBOV), one of five species in the genus Ebolavirus, is the causative agent of the hemorrhagic fever disease epidemic that claimed more than 11,000 lives from 2014 to 2016 in West Africa. The combination of EBOV's ability to disseminate broadly and rapidly within the host and its high pathogenicity pose unique challenges to the human immune system postinfection. Potential transmission from apparently healthy EBOV survivors reported in the recent epidemic raises questions about EBOV persistence and immune surveillance mechanisms. Clinical, virological, and immunological data collected since the West Africa epidemic have greatly enhanced our knowledge of host-virus interactions. However, critical knowledge gaps remain in our understanding of what is necessary for an effective host immune response for protection against, or for clearance of, EBOV infection. This review provides an overview of immune responses against EBOV and discusses those associated with the success or failure to control EBOV infection.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Animais , Anticorpos Antivirais/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA