Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 147(2): 370-81, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000015

RESUMO

By analyzing gene expression data in glioblastoma in combination with matched microRNA profiles, we have uncovered a posttranscriptional regulation layer of surprising magnitude, comprising more than 248,000 microRNA (miR)-mediated interactions. These include ∼7,000 genes whose transcripts act as miR "sponges" and 148 genes that act through alternative, nonsponge interactions. Biochemical analyses in cell lines confirmed that this network regulates established drivers of tumor initiation and subtype implementation, including PTEN, PDGFRA, RB1, VEGFA, STAT3, and RUNX1, suggesting that these interactions mediate crosstalk between canonical oncogenic pathways. siRNA silencing of 13 miR-mediated PTEN regulators, whose locus deletions are predictive of PTEN expression variability, was sufficient to downregulate PTEN in a 3'UTR-dependent manner and to increase tumor cell growth rates. Thus, miR-mediated interactions provide a mechanistic, experimentally validated rationale for the loss of PTEN expression in a large number of glioma samples with an intact PTEN locus.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Humanos , Análise Multivariada , Oncogenes , PTEN Fosfo-Hidrolase/genética , Interferência de RNA
2.
Mol Cell ; 71(2): 271-283.e5, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029005

RESUMO

LIN28 is a bipartite RNA-binding protein that post-transcriptionally inhibits the biogenesis of let-7 microRNAs to regulate development and influence disease states. However, the mechanisms of let-7 suppression remain poorly understood because LIN28 recognition depends on coordinated targeting by both the zinc knuckle domain (ZKD), which binds a GGAG-like element in the precursor, and the cold shock domain (CSD), whose binding sites have not been systematically characterized. By leveraging single-nucleotide-resolution mapping of LIN28 binding sites in vivo, we determined that the CSD recognizes a (U)GAU motif. This motif partitions the let-7 microRNAs into two subclasses, precursors with both CSD and ZKD binding sites (CSD+) and precursors with ZKD but no CSD binding sites (CSD-). LIN28 in vivo recognition-and subsequent 3' uridylation and degradation-of CSD+ precursors is more efficient, leading to their stronger suppression in LIN28-activated cells and cancers. Thus, CSD binding sites amplify the regulatory effects of LIN28.


Assuntos
MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Células-Tronco Embrionárias , Células Hep G2 , Humanos , Células K562 , Camundongos , MicroRNAs/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Domínios Proteicos , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética
3.
J Hepatol ; 80(4): 610-621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242326

RESUMO

BACKGROUND & AIMS: Patients with metastatic, treatment-refractory, and relapsed hepatoblastoma (HB) have survival rates of less than 50% due to limited treatment options. To develop new therapeutic strategies for these patients, our laboratory has developed a preclinical testing pipeline. Given that histone deacetylase (HDAC) inhibition has been proposed for HB, we hypothesized that we could find an effective combination treatment strategy utilizing HDAC inhibition. METHODS: RNA sequencing, microarray, NanoString, and immunohistochemistry data of patient HB samples were analyzed for HDAC class expression. Patient-derived spheroids (PDSp) were used to screen combination chemotherapy with an HDAC inhibitor, panobinostat. Patient-derived xenograft (PDX) mouse models were developed and treated with the combination therapy that showed the highest efficacy in the PDSp drug screen. RESULTS: HDAC RNA and protein expression were elevated in HB tumors compared to normal livers. Panobinostat (IC50 of 0.013-0.059 µM) showed strong in vitro effects and was associated with lower cell viability than other HDAC inhibitors. PDSp demonstrated the highest level of cell death with combination treatment of vincristine/irinotecan/panobinostat (VIP). All four models responded to VIP therapy with a decrease in tumor size compared to placebo. After 6 weeks of treatment, two models demonstrated necrotic cell death, with lower Ki67 expression, decreased serum alpha fetoprotein and reduced tumor burden compared to paired VI- and placebo-treated groups. CONCLUSIONS: Utilizing a preclinical HB pipeline, we demonstrate that panobinostat in combination with VI chemotherapy can induce an effective tumor response in models developed from patients with high-risk, relapsed, and treatment-refractory HB. IMPACT AND IMPLICATIONS: Patients with treatment-refractory hepatoblastoma have limited treatment options with survival rates of less than 50%. Our manuscript demonstrates that combination therapy with vincristine, irinotecan, and panobinostat reduces the size of high-risk, relapsed, and treatment-refractory tumors. With this work we provide preclinical evidence to support utilizing this combination therapy as an arm in future clinical trials.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Hepatoblastoma/tratamento farmacológico , Irinotecano/uso terapêutico , Vincristina/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/induzido quimicamente , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Hepáticas/patologia , Ácidos Hidroxâmicos/farmacologia
4.
Pediatr Dev Pathol ; 27(2): 169-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37903123

RESUMO

Hepatoblastomas (HB) are embryonal tumors with quiet genomes diagnosed mostly in children under 3 years of age and often cured by surgical resection and chemotherapy. However, a subset of HBs behave aggressively, displaying characteristic histologic features and higher genomic instability. Hepatocellular neoplasm-not otherwise specified (HCN-NOS) is a provisional diagnostic category for tumors exhibiting either intermediate or a combination of both HB and hepatocellular carcinoma (HCC) histological features. In this study, we characterized an HCN-NOS diagnosed in a 3-year-old patient presenting with a liver mass, in which both HB and HCC histological components were amendable to macro-dissection and molecular profiling. The spectrum of mutations, copy number changes, mRNA, and protein expression profiles within these 2 histologically distinct tumor areas demonstrate molecular heterogeneity and suggest intratumoral clonal evolution of this hepatocellular CTNNB1-mutant lesion.


Assuntos
Carcinoma Hepatocelular , Hepatoblastoma , Neoplasias Hepáticas , Neoplasias Embrionárias de Células Germinativas , Criança , Humanos , Pré-Escolar , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Hepatoblastoma/diagnóstico , Hepatoblastoma/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação
5.
Mol Ther ; 31(11): 3210-3224, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37705245

RESUMO

Chimeric antigen receptor (CAR)-T cells represent a promising frontier in cancer immunotherapy. However, the current process for developing new CAR constructs is time consuming and inefficient. To address this challenge and expedite the evaluation and comparison of full-length CAR designs, we have devised a novel cloning strategy. This strategy involves the sequential assembly of individual CAR domains using blunt ligation, with each domain being assigned a unique DNA barcode. Applying this method, we successfully generated 360 CAR constructs that specifically target clinically validated tumor antigens CD19 and GD2. By quantifying changes in barcode frequencies through next-generation sequencing, we characterize CARs that best mediate proliferation and expansion of transduced T cells. The screening revealed a crucial role for the hinge domain in CAR functionality, with CD8a and IgG4 hinges having opposite effects in the surface expression, cytokine production, and antitumor activity in CD19- versus GD2-based CARs. Importantly, we discovered two novel CD19-CAR architectures containing the IgG4 hinge domain that mediate superior in vivo antitumor activity compared with the construct used in Kymriah, a U.S. Food and Drug Administration (FDA)-approved therapy. This novel screening approach represents a major advance in CAR engineering, enabling accelerated development of cell-based cancer immunotherapies.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Neoplasias/metabolismo , Imunoglobulina G/metabolismo , Imunoterapia Adotiva/métodos , Antígenos CD19
6.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397048

RESUMO

Negative Pressure Wound Therapy (NPWT) is a commonly employed clinical strategy for wound healing, yet its early-stage mechanisms remain poorly understood. To address this knowledge gap and overcome the limitations of human trials, we establish an NPWT C57BL/6JNarl mouse model to investigate the molecular mechanisms involved in NPWT. In this study, we investigate the intricate molecular mechanisms through which NPWT expedites wound healing. Our focus is on NPWT's modulation of inflammatory immune responses and the concurrent orchestration of multiple signal transduction pathways, resulting in shortened coagulation time and reduced inflammation. Notably, we observe a significant rise in dickkopf-related protein 1 (DKK-1) concentration during NPWT, promoting the differentiation of Hair Follicle Stem Cells (HFSCs) into epidermal cells, expediting wound closure. Under negative pressure, macrophages express and release DKK-1 cytokines, crucial for stimulating HFSC differentiation, as validated in animal experiments and in vitro studies. Our findings illuminate the inflammatory dynamics under NPWT, revealing potential signal transduction pathways. The proposed framework, involving early hemostasis, balanced inflammation, and macrophage-mediated DKK-1 induction, provides a novel perspective on enhancing wound healing during NPWT. Furthermore, these insights lay the groundwork for future pharmacological advancements in managing extensive wounds, opening avenues for targeted therapeutic interventions in wound care.


Assuntos
Tratamento de Ferimentos com Pressão Negativa , Humanos , Camundongos , Animais , Tratamento de Ferimentos com Pressão Negativa/métodos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Cicatrização , Inflamação/terapia
7.
Bioinformatics ; 38(18): 4286-4292, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35876544

RESUMO

MOTIVATION: Microbiota analyses have important implications for health and science. These analyses make use of 16S/18S rRNA gene sequencing to identify taxa and predict species diversity. However, most available tools for analyzing microbiota data require adept programming skills and in-depth statistical knowledge for proper implementation. While long-read amplicon sequencing can lead to more accurate taxa predictions and is quickly becoming more common, practitioners have no easily accessible tools with which to perform their analyses. RESULTS: We present MOCHI, a GUI tool for microbiota amplicon sequencing analysis. MOCHI preprocesses sequences, assigns taxonomy, identifies different abundant species and predicts species diversity and function. It takes either taxonomic count table or FASTQ of partial 16S/18S rRNA or full-length 16S rRNA gene as input. It performs analyses in real time and visualizes data in both tabular and graphical formats. AVAILABILITY AND IMPLEMENTATION: MOCHI can be installed to run locally or accessed as a web tool at https://mochi.life.nctu.edu.tw. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiota/genética , Filogenia
8.
Stem Cells ; 40(8): 736-750, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35535819

RESUMO

Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow with 5-year overall survival of less than 10% in patients over the age of 65. Limited progress has been made in the patient outcome because of the inability to selectively eradicate the leukemic stem cells (LSC) driving the refractory and relapsed disease. Herein, we investigated the role of the reprogramming factor KLF4 in AML because of its critical role in the self-renewal and stemness of embryonic and cancer stem cells. Using a conditional Cre-lox Klf4 deletion system and the MLL-AF9 retroviral mouse model, we demonstrated that loss-of-KLF4 does not significantly affect the induction of leukemia but markedly decreased the frequency of LSCs evaluated in limiting-dose transplantation studies. Loss of KLF4 in leukemic granulocyte-macrophage progenitors (L-GMP), a population enriched for AML LSCs, showed lessened clonogenicity and percentage in the G2/M phase of the cell cycle. RNAseq analysis of purified L-GMPs revealed decreased expression of stemness genes and MLL-target genes and upregulation of the RNA sensing helicase DDX58. However, silencing of DDX58 in KLF4 knockout leukemia indicated that DDX58 is not mediating this phenotype. CRISPR/Cas9 deletion of KLF4 in MOLM13 cell line and AML patient-derived xenograft cells showed impaired expansion in vitro and in vivo associated with a defective G2/M checkpoint. Collectively, our data suggest a mechanism in which KLF4 promotes leukemia progression by establishing a gene expression profile in AML LSCs supporting cell division and stemness.


Assuntos
Fator 4 Semelhante a Kruppel , Leucemia Mieloide Aguda , Animais , Medula Óssea/patologia , Modelos Animais de Doenças , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/metabolismo
9.
J Hepatol ; 77(4): 1026-1037, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577029

RESUMO

BACKGROUND & AIMS: Hepatoblastoma (HB) and hepatocellular carcinoma (HCC) are the predominant liver cancers in children, though their respective treatment options and associated outcomes differ dramatically. Risk stratification using a combination of clinical, histological, and molecular parameters can improve treatment selection, but it is particularly challenging for tumors with mixed histological features, including those in the recently created hepatocellular neoplasm not otherwise specified (HCN NOS) provisional category. We aimed to perform the first molecular characterization of clinically annotated cases of HCN NOS. METHODS: We tested whether these histological features are associated with genetic alterations, cancer gene dysregulation, and outcomes. Namely, we compared the molecular features of HCN NOS, including copy number alterations, mutations, and gene expression profiles, with those in other pediatric hepatocellular neoplasms, including HBs and HCCs, as well as HBs demonstrating focal atypia or pleomorphism (HB FPAs), and HBs diagnosed in older children (>8). RESULTS: Molecular profiles of HCN NOS and HB FPAs revealed common underlying biological features that were previously observed in HCCs. Consequently, we designated these tumor types collectively as HBs with HCC features (HBCs). These tumors were associated with high mutation rates (∼3 somatic mutations/Mb) and were enriched with mutations and alterations in key cancer genes and pathways. In addition, recurrent large-scale chromosomal gains, including gains of chromosomal arms 2q (80%), 6p (70%), and 20p (70%), were observed. Overall, HBCs were associated with poor clinical outcomes. CONCLUSIONS: Our study indicates that histological features seen in HBCs are associated with combined molecular features of HB and HCC, that HBCs are associated with poor outcomes irrespective of patient age, and that transplanted patients are more likely to have good outcomes than those treated with chemotherapy and surgery alone. These findings highlight the importance of molecular testing and early therapeutic intervention for aggressive childhood hepatocellular neoplasms. LAY SUMMARY: We molecularly characterized a class of histologically aggressive childhood liver cancers and showed that these tumors are clinically aggressive and that their observed histological features are associated with underlying recurrent molecular features. We proposed a diagnostic algorithm to identify these cancers using a combination of histological and molecular features, and our analysis suggested that these cancers may benefit from specialized treatment strategies that may differ from treatment guidelines for other childhood liver cancers.


Assuntos
Carcinoma Hepatocelular , Hepatoblastoma , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Criança , Aberrações Cromossômicas , Hepatoblastoma/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Mutação , Adulto Jovem
10.
Genes Dev ; 28(7): 765-82, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24636986

RESUMO

The mammary gland is a very dynamic organ that undergoes continuous remodeling. The critical regulators of this process are not fully understood. Here we identify the microRNA cluster miR-424(322)/503 as an important regulator of epithelial involution after pregnancy. Through the generation of a knockout mouse model, we found that regression of the secretory acini of the mammary gland was compromised in the absence of miR-424(322)/503. Mechanistically, we show that miR-424(322)/503 orchestrates cell life and death decisions by targeting BCL-2 and IGF1R (insulin growth factor-1 receptor). Furthermore, we demonstrate that the expression of this microRNA cluster is regulated by TGF-ß, a well-characterized regulator of mammary involution. Overall, our data suggest a model in which activation of the TGF-ß pathway after weaning induces the transcription of miR-424(322)/503, which in turn down-regulates the expression of key genes. Here, we unveil a previously unknown, multilayered regulation of epithelial tissue remodeling coordinated by the microRNA cluster miR-424(322)/503.


Assuntos
Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Morte Celular/genética , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Humanos , Glândulas Mamárias Animais/citologia , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Desmame
11.
Cancer ; 126(4): 800-807, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730714

RESUMO

BACKGROUND: Racial disparities in cancer outcomes are increasingly recognized, but comprehensive analyses, including molecular studies, are limited. The objective of the current study was to perform a pan-cancer clinical and epigenetic molecular analysis of outcomes in African American (AA) and European American (EA) patients. METHODS: Cross-platform analyses using cancer databases (the Surveillance, Epidemiology, and End Results program database and the National Cancer Data Base) and a molecular database (The Cancer Genome Ancestry Atlas) were performed to evaluate clinical and epigenetic molecular differences between AA and EA patients based on genetic ancestry. RESULTS: In the primary pan-cancer survival analysis using the Surveillance, Epidemiology, and End Results database (2,045,839 patients; 87.5% EA and 12.5% AA), AA patients had higher mortality rates for 28 of 42 cancer types analyzed (hazard ratio, >1.0). AAs continued to have higher mortality in 13 cancer types after adjustment for socioeconomic variables using the National Cancer Database (5,150,023 patients; 11.6% AA and 88.4% EA). Then, molecular features of 5,283 tumors were analyzed in patients who had genetic ancestry data available (87.2% EA and 12.8% AA). Genes were identified with altered DNA methylation along with increased microRNA expression levels unique to AA patients that are associated with cancer drug resistance. Increased miRNAs (miR-15a, miR-17, miR-130-3p, miR-181a) were noted in common among AAs with breast, kidney, thyroid, or prostate carcinomas. CONCLUSIONS: The current results identified epigenetic features in AA patients who have cancer that may contribute to higher mortality rates compared with EA patients who have cancer. Therefore, a focus on molecular signatures unique to AAs may identify actionable molecular abnormalities.


Assuntos
Negro ou Afro-Americano/genética , Epigênese Genética/genética , Disparidades nos Níveis de Saúde , MicroRNAs/genética , Neoplasias/genética , População Branca/genética , Negro ou Afro-Americano/estatística & dados numéricos , Idoso , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Neoplasias/etnologia , Programa de SEER/estatística & dados numéricos , Análise de Sobrevida , Estados Unidos/epidemiologia , População Branca/estatística & dados numéricos
12.
Am J Pathol ; 189(5): 1077-1090, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794805

RESUMO

Hepatoblastoma (HB) is the most common type of pediatric liver cancer. Activation of yes-associated protein (YAP) has been implicated in HB molecular pathogenesis. The transcriptional co-activator Yap regulates downstream gene expression through interaction with the TEA domain (TEAD) proteins. Nonetheless, YAP also displays functions that are independent of its transcriptional activity. The underlying molecular mechanisms by which Yap promotes HB development remain elusive. In the current study, we demonstrated that blocking TEAD function via the dominant-negative form of TEAD2 abolishes Yap-driven HB formation in mice and restrains human HB growth in vitro. When TEAD2 DNA-binding domain was fused with virus protein 16 transcriptional activation domain, it synergized with activated ß-catenin to promote HB formation in vivo. Among TEAD genes, silencing of TEAD4 consistently inhibited tumor growth and Yap target gene expression in HB cell lines. Furthermore, TEAD4 mRNA expression was significantly higher in human HB lesions when compared with corresponding nontumorous liver tissues. Human HB specimens also exhibited strong nuclear immunoreactivity for TEAD4. Altogether, data demonstrate that TEAD-mediated transcriptional activity is both sufficient and necessary for Yap-driven HB development. TEAD4 is the major TEAD isoform and Yap partner in human HB. Targeting TEAD4 may represent an effective treatment option for human HB.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Proteínas Musculares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Proteínas de Ligação a DNA/genética , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Proteínas Musculares/genética , Prognóstico , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
13.
Blood ; 132(3): 321-333, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29884740

RESUMO

Induction of red blood cell (RBC) fetal hemoglobin (HbF; α2γ2) ameliorates the pathophysiology of sickle cell disease (SCD) by reducing the concentration of sickle hemoglobin (HbS; α2ßS2) to inhibit its polymerization. Hydroxyurea (HU), the only US Food and Drug Administration (FDA)-approved drug for SCD, acts in part by inducing HbF; however, it is not fully effective, reflecting the need for new therapies. Whole-exome sequence analysis of rare genetic variants in SCD patients identified FOXO3 as a candidate regulator of RBC HbF. We validated these genomic findings through loss- and gain-of-function studies in normal human CD34+ hematopoietic stem and progenitor cells induced to undergo erythroid differentiation. FOXO3 gene silencing reduced γ-globin RNA levels and HbF levels in erythroblasts, whereas overexpression of FOXO3 produced the opposite effect. Moreover, treatment of primary CD34+ cell-derived erythroid cultures with metformin, an FDA-approved drug known to enhance FOXO3 activity in nonerythroid cells, caused dose-related FOXO3-dependent increases in the percentage of HbF protein and the fraction of HbF-immunostaining cells (F cells). Combined HU and metformin treatment induced HbF additively and reversed the arrest in erythroid maturation caused by HU treatment alone. HbF induction by metformin in erythroid precursors was dependent on FOXO3 expression and did not alter expression of BCL11A, MYB, or KLF1. Collectively, our data implicate FOXO3 as a positive regulator of γ-globin expression and identify metformin as a potential therapeutic agent for SCD.


Assuntos
Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Hemoglobina Fetal/biossíntese , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Metformina/farmacologia , Anemia Falciforme/sangue , Anemia Falciforme/genética , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Criança , Pré-Escolar , Células Eritroides/citologia , Feminino , Hemoglobina Fetal/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Modelos Biológicos , Transdução Genética , gama-Globinas/genética , gama-Globinas/metabolismo
14.
Nucleic Acids Res ; 46(9): 4354-4369, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29684207

RESUMO

microRNAs (miRNAs) play key roles in cancer, but their propensity to couple their targets as competing endogenous RNAs (ceRNAs) has only recently emerged. Multiple models have studied ceRNA regulation, but these models did not account for the effects of co-regulation by miRNAs with many targets. We modeled ceRNA and simulated its effects using established parameters for miRNA/mRNA interaction kinetics while accounting for co-regulation by multiple miRNAs with many targets. Our simulations suggested that co-regulation by many miRNA species is more likely to produce physiologically relevant context-independent couplings. To test this, we studied the overlap of inferred ceRNA networks from four tumor contexts-our proposed pan-cancer ceRNA interactome (PCI). PCI was composed of interactions between genes that were co-regulated by nearly three-times as many miRNAs as other inferred ceRNA interactions. Evidence from expression-profiling datasets suggested that PCI interactions are predictive of gene expression in 12 independent tumor- and non-tumor contexts. Biochemical assays confirmed ceRNA couplings for two PCI subnetworks, including oncogenes CCND1, HIF1A and HMGA2, and tumor suppressors PTEN, RB1 and TP53. Our results suggest that PCI is enriched for context-independent interactions that are coupled by many miRNA species and are more likely to be context independent.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias/genética , RNA Neoplásico/metabolismo , Humanos , Neoplasias/metabolismo
15.
Genome Res ; 25(2): 257-67, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25378249

RESUMO

We introduce a method for simultaneous prediction of microRNA-target interactions and their mediated competitive endogenous RNA (ceRNA) interactions. Using high-throughput validation assays in breast cancer cell lines, we show that our integrative approach significantly improves on microRNA-target prediction accuracy as assessed by both mRNA and protein level measurements. Our biochemical assays support nearly 500 microRNA-target interactions with evidence for regulation in breast cancer tumors. Moreover, these assays constitute the most extensive validation platform for computationally inferred networks of microRNA-target interactions in breast cancer tumors, providing a useful benchmark to ascertain future improvements.


Assuntos
Biologia Computacional/métodos , Epistasia Genética , Redes Reguladoras de Genes , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Algoritmos , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/química , RNA Mensageiro/química
16.
Hepatology ; 65(1): 104-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27775819

RESUMO

Despite being the most common liver cancer in children, hepatoblastoma (HB) is a rare neoplasm. Consequently, few pretreatment tumors have been molecularly profiled, and there are no validated prognostic or therapeutic biomarkers for HB patients. We report on the first large-scale effort to profile pretreatment HBs at diagnosis. Our analysis of 88 clinically annotated HBs revealed three risk-stratifying molecular subtypes that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways: high-risk tumors were characterized by up-regulated nuclear factor, erythroid 2-like 2 activity; high lin-28 homolog B, high mobility group AT-hook 2, spalt-like transcription factor 4, and alpha-fetoprotein expression; and high coordinated expression of oncofetal proteins and stem-cell markers, while low-risk tumors had low lin-28 homolog B and lethal-7 expression and high hepatic nuclear factor 1 alpha activity. CONCLUSION: Analysis of immunohistochemical assays using antibodies targeting these genes in a prospective study of 35 HBs suggested that these candidate biomarkers have the potential to improve risk stratification and guide treatment decisions for HB patients at diagnosis; our results pave the way for clinical collaborative studies to validate candidate biomarkers and test their potential to improve outcome for HB patients. (Hepatology 2017;65:104-121).


Assuntos
Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Regulação Neoplásica da Expressão Gênica , Genômica , Hepatoblastoma/classificação , Humanos , Neoplasias Hepáticas/classificação , Prognóstico
17.
Immunity ; 30(5): 744-52, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19446474

RESUMO

The full set of microRNAs (miRNAs) in the human genome is not known. Because presently known miRNAs have been identified by virtue of their abundant expression in a few cell types, many tissue-specific miRNAs remain unrevealed. To understand the role of miRNAs in B cell function and lymphomagenesis, we generated short-RNA libraries from normal human B cells at different stages of development (naive, germinal center, memory) and from a Burkitt lymphoma cell line. A combination of cloning and computational analysis identified 178 miRNAs (miRNome) expressed in normal and/or transformed B cell libraries. Most notably, the B cell miRNome included 75 miRNAs which to our knowledge have not been previously reported and of which 66 have been validated by RNA blot and/or RT-PCR analyses. Numerous miRNAs were expressed in a stage- or transformation-specific fashion in B cells, suggesting specific functional or pathologic roles. These results provide a resource for studying the role of miRNAs in B cell development, immune function, and lymphomagenesis.


Assuntos
Subpopulações de Linfócitos B/imunologia , MicroRNAs/fisiologia , Animais , Linhagem Celular Tumoral , Cães , Evolução Molecular , Regulação da Expressão Gênica , Haplorrinos , Humanos , Camundongos , MicroRNAs/análise , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Tonsila Palatina/metabolismo , Ratos
18.
BMC Genomics ; 18(1): 418, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558729

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play multiple roles in tumor biology. Interestingly, reports from multiple groups suggest that miRNA targets may be coupled through competitive stoichiometric sequestration. Specifically, computational models predicted and experimental assays confirmed that miRNA activity is dependent on miRNA target abundance, and consequently, changes in the abundance of some miRNA targets lead to changes to the regulation and abundance of their other targets. The resulting indirect regulatory influence between miRNA targets resembles competition and has been dubbed competitive endogenous RNA (ceRNA). Recent studies have questioned the physiological relevance of ceRNA interactions, our ability to accurately predict these interactions, and the number of genes that are impacted by ceRNA interactions in specific cellular contexts. RESULTS: To address these concerns, we reverse engineered ceRNA networks (ceRNETs) in breast and prostate adenocarcinomas using context-specific TCGA profiles, and tested whether ceRNA interactions can predict the effects of RNAi-mediated gene silencing perturbations in PC3 and MCF7 cells._ENREF_22 Our results, based on tests of thousands of inferred ceRNA interactions that are predicted to alter hundreds of cancer genes in each of the two tumor contexts, confirmed statistically significant effects for half of the predicted targets. CONCLUSIONS: Our results suggest that the expression of a significant fraction of cancer genes may be regulated by ceRNA interactions in each of the two tumor contexts.


Assuntos
Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Bases de Dados Genéticas , Humanos , Células MCF-7 , MicroRNAs/genética
19.
J Hepatol ; 65(2): 325-33, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27117591

RESUMO

BACKGROUND & AIMS: Pediatric liver cancer is a rare but serious disease whose incidence is rising, and for which the therapeutic options are limited. Development of more targeted, less toxic therapies is hindered by the lack of an experimental animal model that captures the heterogeneity and metastatic capability of these tumors. METHODS: Here we established an orthotopic engraftment technique to model a series of patient-derived tumor xenograft (PDTX) from pediatric liver cancers of all major histologic subtypes: hepatoblastoma, hepatocellular cancer and hepatocellular malignant neoplasm. We utilized standard (immuno) staining methods for histological characterization, RNA sequencing for gene expression profiling and genome sequencing for identification of druggable targets. We also adapted stem cell culturing techniques to derive two new pediatric cancer cell lines from the xenografted mice. RESULTS: The patient-derived tumor xenografts recapitulated the histologic, genetic, and biological characteristics-including the metastatic behavior-of the corresponding primary tumors. Furthermore, the gene expression profiles of the two new liver cancer cell lines closely resemble those of the primary tumors. Targeted therapy of PDTX from an aggressive hepatocellular malignant neoplasm with the MEK1 inhibitor trametinib and pan-class I PI3 kinase inhibitor NVP-BKM120 resulted in significant growth inhibition, thus confirming this PDTX model as a valuable tool to study tumor biology and patient-specific therapeutic responses. CONCLUSIONS: The novel metastatic xenograft model and the isogenic xenograft-derived cell lines described in this study provide reliable tools for developing mutation- and patient-specific therapies for pediatric liver cancer. LAY SUMMARY: Pediatric liver cancer is a rare but serious disease and no experimental animal model currently captures the complexity and metastatic capability of these tumors. We have established a novel animal model using human tumor tissue that recapitulates the genetic and biological characteristics of this cancer. We demonstrate that our patient-derived animal model, as well as two new cell lines, are useful tools for experimental therapies.


Assuntos
Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Criança , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Stem Cells ; 33(2): 367-77, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25336442

RESUMO

The predominant view of pluripotency regulation proposes a stable ground state with coordinated expression of key transcription factors (TFs) that prohibit differentiation. Another perspective suggests a more complexly regulated state involving competition between multiple lineage-specifying TFs that define pluripotency. These contrasting views were developed from extensive analyses of TFs in pluripotent cells in vitro. An experimentally validated, genome-wide repertoire of the regulatory interactions that control pluripotency within the in vivo cellular contexts is yet to be developed. To address this limitation, we assembled a TF interactome of adult human male germ cell tumors (GCTs) using the Algorithm for the Accurate Reconstruction of Cellular Pathways (ARACNe) to analyze gene expression profiles of 141 tumors comprising pluripotent and differentiated subsets. The network (GCT(Net)) comprised 1,305 TFs, and its ingenuity pathway analysis identified pluripotency and embryonal development as the top functional pathways. We experimentally validated GCT(Net) by functional (silencing) and biochemical (ChIP-seq) analysis of the core pluripotency regulatory TFs POU5F1, NANOG, and SOX2 in relation to their targets predicted by ARACNe. To define the extent of the in vivo pluripotency network in this system, we ranked all TFs in the GCT(Net) according to sharing of ARACNe-predicted targets with those of POU5F1 and NANOG using an odds-ratio analysis method. To validate this network, we silenced the top 10 TFs in the network in H9 embryonic stem cells. Silencing of each led to downregulation of pluripotency and induction of lineage; 7 of the 10 TFs were identified as pluripotency regulators for the first time.


Assuntos
Algoritmos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Linhagem Celular Tumoral , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Células-Tronco Pluripotentes/patologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA