Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 48(4): 1519-1529, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071531

RESUMO

BACKGROUND/AIMS: The metabolic syndrome (MS) is a cluster of metabolic changes that carry a high risk of cardiovascular disease (CVD). A newly discovered microalga, coccomyxagloeobotrydiformis (CGD), has been reported to improve ischemic stroke and metabolism-related indicators. We observed the therapeutic effects of CGD on MS and postulated the underlying mechanism. METHODS: A diet-induced MS model in rats was used to observe the therapeutic effects of CGD on MS. Blood-glucose and lipid indices were measured using enzymatic colorimetric kits. A biologic data acquisition and analysis system (BL-420F) was used to evaluate cardiac function. Expression of mitochondrial respiratory chain (MRC) enzymes was measured by immunofluorescence staining. The proteins associated with oxidative stress, apoptosis and inflammation were detected by western blotting. RESULTS: Body weight, abdominal circumference, fasting blood glucose , blood pressure as well as serum levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol were decreased whereas serum levels of high-density lipoprotein-cholesterol was increased in CGD-treated MS rats. CGD increased left-ventricular systolic pressure, left-ventricular end-diastolic pressure, left-ventricular systolic pressure maximum rate of increase and left-ventricular diastolic pressure maximum rate of decrease in MS rats with cardiovascular complications. CGD up-regulated expression of adenosine monophosphate-activated protein kinase and peroxisome proliferator activated receptor gamma coactivator 1-alpha in the heart, adipose tissue and skeletal muscle. Expression of the MRC subunits of ATPase 6, cytochrome b and succinate dehydrogenase complex, subunit-A was increased whereas that of uncoupling protein-2 decreased in different tissues. CGD showed anti-oxidation effects by increasing expression of superoxide dismutase and decreasing that of malondialdehyde. High expression of Bcl-2 and low expression of Bax and caspase-3 supported the anti-apoptotic effect of CGD on the cardiovascular complications of MS. CONCLUSION: CGD has a therapeutic effect on MS and associated cardiovascular complications by eliciting mitochondrial protection and having anti-oxidation and anti-apoptosis effects. CGD could be used for MS treatment.


Assuntos
Síndrome Metabólica/patologia , Microalgas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicemia/análise , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , HDL-Colesterol/sangue , Modelos Animais de Doenças , Ácidos Linolênicos/farmacologia , Ácidos Linolênicos/uso terapêutico , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Microalgas/química , Microalgas/metabolismo , Miocárdio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tropomodulina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Desacopladora 2/metabolismo
2.
Cell Physiol Biochem ; 51(6): 2523-2535, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30562752

RESUMO

BACKGROUND/AIMS: Inflammation plays a vital role in the etiology and pathogenesis of chronic noncommunicable diseases (NCDs), which are the leading health issues throughout the world. Our previous studies verified the satisfactory therapeutic effects of Coccomyxa gloeobotrydiformis (CGD) polysaccharide on several NCDs. In this study, we aimed to investigate the anti-inflammatory effects of CGD polysaccharide, and the corresponding molecular mechanisms, on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. METHODS: A viability assay and a lactate dehydrogenase (LDH) assay were used to measure the cytotoxic effects of CGD polysaccharide on LPS-stimulated RAW264.7 cells. To investigate the potential anti-inflammatory mechanisms of CGD polysaccharide in LPS-stimulated RAW264.7 cells, nitric oxide (NO) production was determined using a NO assay and the expression of inflammatory mediators (PGE2, iNOS and COX-2), inflammatory cytokines (TNF-α, IL-6, IL-1ß and IL-10) and inflammation-related signaling pathways (the MAPK/NF-κB, PI3K/AKT/JNK, JAK/STAT and Nrf2/HO-1pathways) were observed by western blotting. The translocation of NF-κB p65 was also observed using an immunofluorescent assay. RESULTS: CGD polysaccharide significantly inhibited LPS-induced NO production and PGE2 expression by reducing the expression of iNOS and COX-2. It also suppressed the expression of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1ß, and up-regulated the expression of the anti-inflammatory cytokine IL-10. Further experiments demonstrated that CGD polysaccharide could inhibit inflammatory signaling pathways (the MAPK/NF-κB, PI3K/AKT/JNK and JAK/STAT pathways). At the same time, it enhanced the anti-inflammatory pathway Nrf2/HO-1. In addition, CGD polysaccharide did not display any cytotoxic effects, even at a high concentration. CONCLUSION: Taken together, the results suggest that CGD polysaccharide significantly inhibits LPS-induced inflammation in RAW264.7 cells. This effect lies in its regulatory effects on the signaling pathways MAPK/ NF-κB, PI3K/AKT/JNK, JAK/STAT and Nrf2/HO-1.Our findings reveal that CGD polysaccharide has the potential to be used as a relatively safe and effective drug as part of the treatment of NCDs.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Polissacarídeos/farmacologia , Animais , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/imunologia , Citocinas/imunologia , Dinoprostona/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Microalgas/química , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Polissacarídeos/química , Células RAW 264.7
3.
Mar Drugs ; 15(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208594

RESUMO

A number of polysaccharides have been reported to show immunomodulatory and antiviral activities against various animal viruses. AEX is a polysaccharide extracted from the green algae, Coccomyxa gloeobotrydiformis. The aim of this study was to examine the function of AEX in regulating the immune response in chickens and its capacity to inhibit the infectious bursal disease virus (IBDV), to gain an understanding of its immunomodulatory and antiviral ability. Here, preliminary immunological tests in vitro showed that the polysaccharide AEX can activate the chicken peripheral blood molecular cells' (PBMCs) response by inducing the production of cytokines and NO, promote extracellular antigen presentation but negatively regulate intracellular antigen presentation in chicken splenic lymphocytes, and promote the proliferation of splenic lymphocytes and DT40 cells. An antiviral analysis showed that AEX repressed IBDV replication by the deactivation of viral particles or by interfering with adsorption in vitro and reduced the IBDV viral titer in the chicken bursa of Fabricius. Finally, in this study, when AEX was used as an adjuvant for the IBDV vaccine, specific anti-IBDV antibody (IgY, IgM, and IgA) titers were significantly decreased. These results indicate that the polysaccharide AEX may be a potential alternative approach for anti-IBDV therapy and an immunomodulator for the poultry industry. However, more experimentation is needed to find suitable conditions for it to be used as an adjuvant for the IBDV vaccine.


Assuntos
Antivirais/imunologia , Clorófitas/imunologia , Fatores Imunológicos/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , Polissacarídeos/imunologia , Animais , Anticorpos Antivirais/imunologia , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Galinhas/virologia , Citocinas/imunologia , Linfócitos/imunologia , Linfócitos/virologia , Óxido Nítrico/imunologia , Organismos Livres de Patógenos Específicos/imunologia , Baço/imunologia , Baço/virologia , Vacinas Virais/imunologia
4.
Int J Biol Sci ; 11(7): 825-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078724

RESUMO

Declining in learning and memory is one of the most common and prominent problems during the aging process. Neurotransmitter changes, oxidative stress, mitochondrial dysfunction and abnormal signal transduction were considered to participate in this process. In the present study, we examined the effects of Coccomyxa gloeobotrydiformis (CGD) on learning and memory ability of intrinsic aging rats. As a result, CGD treated (50 mg/kg·d or 100 mg/kg ·d for a duration of 8 weeks) 22-month-old male rats, which have shown significant improvement on learning and spatial memory ability compared with control, which was evidently revealed in both the hidden platform tasks and probe trials. The following immunohistochemistry and Western blot experiments suggested that CGD could increase the content of Ach and thereby improve the function of the cholinergic neurons in the hippocampus, and therefore also improving learning and memory ability of the aged rats by acting as an anti-inflammatory agent. The effects of CGD on learning and memory might also have an association with the ERK/CREB signalling. The results above suggest that the naturally made drug CGD may have several great benefit as a multi-target drug in the process of prevention and/or treatment of age-dependent cognitive decline and aging process.


Assuntos
Clorófitas/química , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Acetilcolina/metabolismo , Fatores Etários , Análise de Variância , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Fármacos Neuroprotetores/química , Ratos , Ácido alfa-Linolênico/análise
5.
Int J Biol Sci ; 9(8): 811-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23983614

RESUMO

Stroke is a major cause of mortality and the leading cause of permanent disability. In this study, we adopted the classic middle cerebral artery occlusion(MCAO) stroke model to observe the therapeutic effects of coccomyxa gloeobotrydiformis(CGD) on ischemic stroke, and discuss the underlying mechanisms. Low dose (50 mg/kg.day) and high dose (100 mg/kg.day) concentrations of the drug CGD were intragastrically administrated separately for 8 weeks. Infarct volumes, neurologic deficits and degree of stroke-induced brain edema were measured 24 hours after reperfusion. Furthermore, oxidative stress related factors (SOD and MDA), mitochondrial membrane potential, and apoptosis regulatory factors (mitochondrial Cyt-C, Bcl-2, Bax, and caspase-3) were all investigated in this research. We found that CGD attenuated cerebral infarction, brain edema and neurologic deficits; CGD maintained the mitochondrial membrane potential and decreased mitochondrial swelling. It also prevented oxidative damage by reducing MDA and increasing SOD. In addition, CGD could effectively attenuate apoptosis by restoring the level of mitochondrial Cyt C and regulating the expression of Bcl-2, Bax and caspase 3. These results revealed that CGD has a therapeutic effect on ischemic stroke, possibly by inducing mitochondrial protection and anti-apoptotic mechanisms.


Assuntos
Antioxidantes/farmacologia , Infarto Encefálico/prevenção & controle , Clorófitas/química , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/prevenção & controle , Ácido alfa-Linolênico/farmacologia , Análise de Variância , Animais , Antioxidantes/análise , Western Blotting , Infarto Encefálico/patologia , Imunoensaio , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores/análise , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reperfusão , Acidente Vascular Cerebral/tratamento farmacológico , Ácido alfa-Linolênico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA