Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 18(7): 747-756, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239102

RESUMO

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas/normas , Metabolômica/normas , Distribuição Aleatória , Manejo de Espécimes , Fluxo de Trabalho
2.
Metabolomics ; 20(2): 41, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480600

RESUMO

BACKGROUND: The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse. AIM OF REVIEW: The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies. KEY SCIENTIFIC CONCEPTS OF REVIEW: We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Automação
3.
Nucleic Acids Res ; 50(D1): D665-D677, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791429

RESUMO

The Natural Products Magnetic Resonance Database (NP-MRD) is a comprehensive, freely available electronic resource for the deposition, distribution, searching and retrieval of nuclear magnetic resonance (NMR) data on natural products, metabolites and other biologically derived chemicals. NMR spectroscopy has long been viewed as the 'gold standard' for the structure determination of novel natural products and novel metabolites. NMR is also widely used in natural product dereplication and the characterization of biofluid mixtures (metabolomics). All of these NMR applications require large collections of high quality, well-annotated, referential NMR spectra of pure compounds. Unfortunately, referential NMR spectral collections for natural products are quite limited. It is because of the critical need for dedicated, open access natural product NMR resources that the NP-MRD was funded by the National Institute of Health (NIH). Since its launch in 2020, the NP-MRD has grown quickly to become the world's largest repository for NMR data on natural products and other biological substances. It currently contains both structural and NMR data for nearly 41,000 natural product compounds from >7400 different living species. All structural, spectroscopic and descriptive data in the NP-MRD is interactively viewable, searchable and fully downloadable in multiple formats. Extensive hyperlinks to other databases of relevance are also provided. The NP-MRD also supports community deposition of NMR assignments and NMR spectra (1D and 2D) of natural products and related meta-data. The deposition system performs extensive data enrichment, automated data format conversion and spectral/assignment evaluation. Details of these database features, how they are implemented and plans for future upgrades are also provided. The NP-MRD is available at https://np-mrd.org.


Assuntos
Produtos Biológicos/química , Bases de Dados Factuais , Espectroscopia de Ressonância Magnética , Software , Produtos Biológicos/classificação , Internet
4.
J Nat Prod ; 86(11): 2554-2561, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37935005

RESUMO

Nuclear magnetic resonance (NMR) data are rarely deposited in open databases, leading to loss of critical scientific knowledge. Existing data reporting methods (images, tables, lists of values) contain less information than raw data and are poorly standardized. Together, these issues limit FAIR (findable, accessible, interoperable, reusable) access to these data, which in turn creates barriers for compound dereplication and the development of new data-driven discovery tools. Existing NMR databases either are not designed for natural products data or employ complex deposition interfaces that disincentivize deposition. Journals, including the Journal of Natural Products (JNP), are now requiring data submission as part of the publication process, creating the need for a streamlined, user-friendly mechanism to deposit and distribute NMR data.


Assuntos
Produtos Biológicos , Bases de Dados Factuais , Espectroscopia de Ressonância Magnética
5.
Proc Natl Acad Sci U S A ; 117(9): 4642-4652, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071231

RESUMO

Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 µg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.


Assuntos
Compostos Benzidrílicos/toxicidade , Encéfalo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Sulfonas/toxicidade , Trofoblastos/efeitos dos fármacos , Animais , Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Trofoblastos/metabolismo
6.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770882

RESUMO

Solid-phase microextraction (SPME) was coupled to gas chromatography mass spectrometry (GC-MS) and a method optimized to quantitatively and qualitatively measure a large array of volatile metabolites in alfalfa glandular trichomes isolated from stems, trichome-free stems, and leaves as part of a non-targeted metabolomics approach. Major SPME extraction parameters optimized included SPME fiber composition, extraction temperature, and extraction time. The optimized SPME method provided the most chemically diverse coverage of alfalfa volatile and semi-volatile metabolites using a DVB/CAR/PDMS fiber, extraction temperature of 60 °C, and an extraction time of 20 min. Alfalfa SPME-GC-MS profiles were processed using automated peak deconvolution and identification (AMDIS) and quantitative data extraction software (MET-IDEA). A total of 87 trichome, 59 stem, and 99 leaf volatile metabolites were detected after background subtraction which removed contaminants present in ambient air and associated with the fibers and NaOH/EDTA buffer solution containing CaCl2. Thirty-seven volatile metabolites were detected in all samples, while 15 volatile metabolites were uniquely detected only in glandular trichomes, 9 only in stems, and 33 specifically in leaves as tissue specific volatile metabolites. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) of glandular trichomes, stems, and leaves showed that the volatile metabolic profiles obtained from the optimized SPME-GC-MS method clearly differentiated the three tissues (glandular trichomes, stems, and leaves), and the biochemical basis for this differentiation is discussed. Although optimized using plant tissues, the method can be applied to other types of samples including fruits and other foods.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Medicago sativa/química , Metaboloma , Metabolômica , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Biologia Computacional/métodos , Análise de Dados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Análise de Componente Principal , Microextração em Fase Sólida/métodos , Temperatura , Compostos Orgânicos Voláteis/química
7.
J Proteome Res ; 19(1): 92-105, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31599156

RESUMO

Azospirillum brasilense is a diazotrophic microorganism capable of associating with roots of important grasses and cereals, promoting plant growth and increasing crop yields. Nitrogen levels and the Ntr regulatory system control the nitrogen metabolism in A. brasilense. This system comprises the nitrogen regulatory proteins GlnD, which is capable of adding uridylyl groups to the PII proteins, GlnB (PII-1) and GlnZ (PII-2), under limiting nitrogen levels. Under such conditions, the histidine kinase NtrB (nitrogen regulatory protein B) cannot interact with GlnB and phosphorylate NtrC (nitrogen regulatory protein C). The phosphorylated form of NtrC acts as a transcriptional activator of genes involved in the metabolism of alternative nitrogen sources. Considering the key role of NtrC in nitrogen metabolism in A. brasilense, in this work we evaluated the proteomic and metabolomic profiles of the wild-type FP2 strain and its mutant ntrC grown under high and low nitrogen. Analysis of the integrated data identifies novel NtrC targets, including proteins involved in the response against oxidative stress (i.e., glutathione S-transferase and hydroperoxide resistance protein), underlining the importance of NtrC to bacterial survival under oxidative stress conditions.


Assuntos
Azospirillum brasilense , Proteômica , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Fixação de Nitrogênio , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo
8.
Plant Physiol ; 181(1): 63-84, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289215

RESUMO

Lignin provides essential mechanical support for plant cell walls but decreases the digestibility of forage crops and increases the recalcitrance of biofuel crops. Attempts to modify lignin content and/or composition by genetic modification often result in negative growth effects. Although several studies have attempted to address the basis for such effects in individual transgenic lines, no common mechanism linking lignin modification with perturbations in plant growth and development has yet been identified. To address whether a common mechanism exists, we have analyzed transposon insertion mutants resulting in independent loss of function of five enzymes of the monolignol pathway, as well as one double mutant, in the model legume Medicago truncatula These plants exhibit growth phenotypes from essentially wild type to severely retarded. Extensive phenotypic, transcriptomic, and metabolomics analyses, including structural characterization of differentially expressed compounds, revealed diverse phenotypic consequences of lignin pathway perturbation that were perceived early in plant development but were not predicted by lignin content or composition alone. Notable phenotypes among the mutants with severe growth impairment were increased trichome numbers, accumulation of a variety of triterpene saponins, and extensive but differential ectopic expression of defense response genes. No currently proposed model explains the observed phenotypes across all lines. We propose that reallocation of resources into defense pathways is linked to the severity of the final growth phenotype in monolignol pathway mutants of M. truncatula, although it remains unclear whether this is a cause or an effect of the growth impairment.


Assuntos
Lignina/metabolismo , Medicago truncatula/fisiologia , Biocombustíveis , Transporte Biológico , Parede Celular/química , Parede Celular/metabolismo , Produtos Agrícolas , Expressão Ectópica do Gene , Perfilação da Expressão Gênica , Lignina/química , Medicago truncatula/química , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Metabolômica , Mutação , Fenótipo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia
9.
BMC Cancer ; 20(1): 600, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600361

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a multifactorial disease resulting from both genetic predisposition and environmental factors including the gut microbiota (GM), but deciphering the influence of genetic variants, environmental variables, and interactions with the GM is exceedingly difficult. We previously observed significant differences in intestinal adenoma multiplicity between C57BL/6 J-ApcMin (B6-Min/J) from The Jackson Laboratory (JAX), and original founder strain C57BL/6JD-ApcMin (B6-Min/D) from the University of Wisconsin. METHODS: To resolve genetic and environmental interactions and determine their contributions we utilized two genetically inbred, independently isolated ApcMin mouse colonies that have been separated for over 20 generations. Whole genome sequencing was used to identify genetic variants unique to the two substrains. To determine the influence of genetic variants and the impact of differences in the GM on phenotypic variability, we used complex microbiota targeted rederivation to generate two Apc mutant mouse colonies harboring complex GMs from two different sources (GMJAX originally from JAX or GMHSD originally from Envigo), creating four ApcMin groups. Untargeted metabolomics were used to characterize shifts in the fecal metabolite profile based on genetic variation and differences in the GM. RESULTS: WGS revealed several thousand high quality variants unique to the two substrains. No homozygous variants were present in coding regions, with the vast majority of variants residing in noncoding regions. Host genetic divergence between Min/J and Min/D and the complex GM additively determined differential adenoma susceptibility. Untargeted metabolomics revealed that both genetic lineage and the GM collectively determined the fecal metabolite profile, and that each differentially regulates bile acid (BA) metabolism. Metabolomics pathway analysis facilitated identification of a functionally relevant private noncoding variant associated with the bile acid transporter Fatty acid binding protein 6 (Fabp6). Expression studies demonstrated differential expression of Fabp6 between Min/J and Min/D, and the variant correlates with adenoma multiplicity in backcrossed mice. CONCLUSIONS: We found that both genetic variation and differences in microbiota influences the quantitiative adenoma phenotype in ApcMin mice. These findings demonstrate how the use of metabolomics datasets can aid as a functional genomic tool, and furthermore illustrate the power of a multi-omics approach to dissect complex disease susceptibility of noncoding variants.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Microbioma Gastrointestinal/fisiologia , Predisposição Genética para Doença , Adenoma/metabolismo , Adenoma/microbiologia , Proteína da Polipose Adenomatosa do Colo/genética , Alelos , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Metabolômica , Metagenômica , Camundongos , Mutação
10.
Plant Cell Physiol ; 60(10): 2152-2166, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150089

RESUMO

12-hydroxy-jasmonoyl-isoleucine (12OH-JA-Ile) is a metabolite in the catabolic pathway of the plant hormone jasmonate, and is synthesized by the cytochrome P450 subclade 94 enzymes. Contrary to the well-established function of jasmonoyl-isoleucine (JA-Ile) as the endogenous bioactive form of jasmonate, the function of 12OH-JA-Ile is unclear. Here, the potential role of 12OH-JA-Ile in jasmonate signaling and wound response was investigated. Exogenous application of 12OH-JA-Ile mimicked several JA-Ile effects including marker gene expression, anthocyanin accumulation and trichome induction in Arabidopsis thaliana. Genome-wide transcriptomics and untargeted metabolite analyses showed large overlaps between those affected by 12OH-JA-Ile and JA-Ile. 12OH-JA-Ile signaling was blocked by mutation in CORONATINE INSENSITIVE 1. Increased anthocyanin accumulation by 12OH-JA-Ile was additionally observed in tomato and sorghum, and was disrupted by the COI1 defect in tomato jai1 mutant. In silico ligand docking predicted that 12OH-JA-Ile can maintain many of the key interactions with COI1-JAZ1 residues identified earlier by crystal structure studies using JA-Ile as ligand. Genetic alternation of jasmonate metabolic pathways in Arabidopsis to deplete both JA-Ile and 12OH-JA-Ile displayed enhanced jasmonate deficient wound phenotypes and was more susceptible to insect herbivory than that depleted in only JA-Ile. Conversely, mutants overaccumulating 12OH-JA-Ile showed intensified wound responses compared with wild type with similar JA-Ile content. These data are indicative of 12OH-JA-Ile functioning as an active jasmonate signal and contributing to wound and defense response in higher plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Isoleucina/metabolismo , Redes e Vias Metabólicas , Fenótipo , Transdução de Sinais
11.
Metabolomics ; 15(6): 85, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31144047

RESUMO

INTRODUCTION: Triterpene saponins are important bioactive plant natural products found in many plant families including the Leguminosae. OBJECTIVES: We characterize two Medicago truncatula cytochrome P450 enzymes, MtCYP72A67 and MtCYP72A68, involved in saponin biosynthesis including both in vitro and in planta evidence. METHODS: UHPLC-(-)ESI-QToF-MS was used to profile saponin accumulation across a collection of 106 M. truncatula ecotypes. The profiling results identified numerous ecotypes with high and low saponin accumulation in root and aerial tissues. Four ecotypes with significant differential saponin content in the root and/or aerial tissues were selected, and correlated gene expression profiling was performed. RESULTS: Correlation analyses between gene expression and saponin accumulation revealed high correlations between saponin content with gene expression of ß-amyrin synthase, MtCYP716A12, and two cytochromes P450 genes, MtCYP72A67 and MtCYP72A68. In vivo and in vitro biochemical assays using yeast microsomes containing MtCYP72A67 revealed hydroxylase activity for carbon 2 of oleanolic acid and hederagenin. This finding was supported by functional characterization of MtCYP72A67 using RNAi-mediated gene silencing in M. truncatula hairy roots, which revealed a significant reduction of 2ß-hydroxylated sapogenins. In vivo and in vitro assays with MtCYP72A68 produced in yeast showed multifunctional oxidase activity for carbon 23 of oleanolic acid and hederagenin. These findings were supported by overexpression of MtCYP72A68 in M. truncatula hairy roots, which revealed significant increases of oleanolic acid, 2ß-hydroxyoleanolic acid, hederagenin and total saponin levels. CONCLUSIONS: The cumulative data support that MtCYP72A68 is a multisubstrate, multifunctional oxidase and MtCYP72A67 is a 2ß-hydroxylase, both of which function during the early steps of triterpene-oleanate sapogenin biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Sapogeninas/metabolismo , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão/métodos , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Metabolômica/métodos , Proteínas de Plantas/genética , Espectrometria de Massas por Ionização por Electrospray/métodos
12.
Reproduction ; 156(1): 1-10, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29692359

RESUMO

Paternal environment can induce detrimental developmental origins of health and disease (DOHaD) effects in resulting offspring and even future descendants. Such paternal-induced DOHaD effects might originate from alterations in a possible seminal fluid microbiome (SFM) and composite metabolome. Seminal vesicles secrete a slightly basic product enriched with fructose and other carbohydrates, providing an ideal habitat for microorganisms. Past studies confirm the existence of a SFM that is influenced by genetic and nutritional status. Herein, we sought to determine whether treatment of male mice with a combination of antibiotics designed to target SFM induces metabolic alterations in seminal vesicle gland secretions (seminal fluid) and histopathological changes in testes and epididymides. Adult (10- to 12-week-old) National Institutes of Health (NIH) Swiss males (n = 10 per group) were treated with Clindamycin 0.06 mg/kg day, Unasyn (ampicillin/sulbactam) 40 mg/kg day and Baytril (enrofloxacin) 50 mg/kg day designed to target the primary bacteria within the SFM or saline vehicle alone. Fourteen-day antibiotic treatment of males induced metabolomic changes in seminal vesicles with inosine, xanthine and l-glutamic acid decreased but d-fructose increased in glandular secretions. While spermatogenesis was not affected in treated males, increased number of epididymal tubules showed cribriform growth in this group (7 antibiotic-treated males: 3 saline control males; P = 0.01). Antibiotic-treated males showed more severe cribriform cysts. Current findings suggest antibiotic treatment of male mice results in seminal fluid metabolome and epididymal histopathological alterations. It remains to be determined whether such changes compromise male reproductive function or lead to DOHaD effects in resulting offspring.


Assuntos
Antibacterianos/farmacologia , Epididimo/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Metaboloma/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Ampicilina/farmacologia , Animais , Enrofloxacina , Epididimo/metabolismo , Masculino , Camundongos , Sêmen/metabolismo , Sulbactam/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo
13.
J Biol Chem ; 291(53): 27112-27121, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27856641

RESUMO

N-Acylethanolamines (NAEs) are bioactive fatty acid derivatives present in trace amounts in many eukaryotes. Although NAEs have signaling and physiological roles in animals, little is known about their metabolic fate in plants. Our previous microarray analyses showed that inhibition of Arabidopsis thaliana seedling growth by exogenous N-lauroylethanolamine (NAE 12:0) was accompanied by the differential expression of multiple genes encoding small molecule-modifying enzymes. We focused on the gene At5g39050, which encodes a phenolic glucoside malonyltransferase 1 (PMAT1), to better understand the biological significance of NAE 12:0-induced gene expression changes. PMAT1 expression was induced 3-5-fold by exogenous NAE 12:0. PMAT1 knockouts (pmat1) had reduced sensitivity to the growth-inhibitory effects of NAE 12:0 compared with wild type leading to the hypothesis that PMAT1 might be a previously uncharacterized regulator of NAE metabolism in plants. To test this hypothesis, metabolic profiling of wild-type and pmat1 seedlings treated with NAE 12:0 was conducted. Wild-type seedlings treated with NAE 12:0 accumulated glucosylated and malonylated forms of this NAE species, and structures were confirmed using nuclear magnetic resonance (NMR) spectroscopy. By contrast, only the peak corresponding to NAE 12:0-glucoside was detected in pmat1 Recombinant PMAT1 catalyzed the reaction converting NAE 12:0-glucoside to NAE 12:0-mono- or -dimalonylglucosides providing direct evidence that this enzyme is involved in NAE 12:0-glucose malonylation. Taken together, our results indicate that glucosylation of NAE 12:0 by a yet to be determined glucosyltransferase and its subsequent malonylation by PMAT1 could represent a mechanism for modulating the biological activities of NAEs in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etanolaminas/metabolismo , Glucosídeos/metabolismo , Ácidos Láuricos/metabolismo , Malonatos/metabolismo , Plântula/metabolismo , Amidoidrolases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais
14.
Plant J ; 88(6): 947-962, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27500669

RESUMO

Foliar stomatal movements are critical for regulating plant water loss and gas exchange. Elevated carbon dioxide (CO2 ) levels are known to induce stomatal closure. However, the current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report metabolomic responses of Brassica napus guard cells to elevated CO2 using three hyphenated metabolomics platforms: gas chromatography-mass spectrometry (MS); liquid chromatography (LC)-multiple reaction monitoring-MS; and ultra-high-performance LC-quadrupole time-of-flight-MS. A total of 358 metabolites from guard cells were quantified in a time-course response to elevated CO2 level. Most metabolites increased under elevated CO2 , showing the most significant differences at 10 min. In addition, reactive oxygen species production increased and stomatal aperture decreased with time. Major alterations in flavonoid, organic acid, sugar, fatty acid, phenylpropanoid and amino acid metabolic pathways indicated changes in both primary and specialized metabolic pathways in guard cells. Most interestingly, the jasmonic acid (JA) biosynthesis pathway was significantly altered in the course of elevated CO2 treatment. Together with results obtained from JA biosynthesis and signaling mutants as well as CO2 signaling mutants, we discovered that CO2 -induced stomatal closure is mediated by JA signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Ciclopentanos/metabolismo , Metabolômica/métodos , Oxilipinas/metabolismo , Estômatos de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
J Chem Ecol ; 43(7): 712-724, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28744732

RESUMO

Plant resistance mechanisms to insect herbivory can potentially be bred into crops as an important strategy for integrated pest management. Medicago truncatula ecotypes inoculated with the rhizobium Ensifer medicae (Sinorhizobium medica) WSM419 were screened for resistance to herbivory by caterpillars of the beet armyworm, Spodoptera exigua, through leaf and whole plant choice studies; TN1.11 and F83005.5 are identified as the least and most deterrent ecotypes, respectively. In response to caterpillar herbivory, both ecotypes mount a robust burst of plant defensive jasmonate phytohormones. Restriction of caterpillars to either of these ecotypes does not adversely affect pest performance. This argues for an antixenosis (deterrence) resistance mechanism associated with the F83005.5 ecotype. Unbiased metabolomic profiling identified strong ecotype-specific differences in metabolite profile, particularly in the content of oleanolic-derived saponins that may act as antifeedants. Compared to the more susceptible ecotype, F83005.5 has higher levels of oleanolic-type zanhic acid- and medicagenic acid-derived compounds. Together, these data support saponin-mediated deterrence as a resistance mechanism of the F83005.5 ecotype and implicates these compounds as potential antifeedants that could be used in agricultural sustainable pest management strategies.


Assuntos
Herbivoria , Medicago truncatula/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Saponinas/metabolismo , Spodoptera/fisiologia , Animais , Medicago truncatula/química , Metaboloma , Reguladores de Crescimento de Plantas/análise , Saponinas/análise
16.
Anal Chem ; 88(23): 11373-11383, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934098

RESUMO

Custom software entitled Plant Metabolite Annotation Toolbox (PlantMAT) has been developed to address the number one grand challenge in metabolomics, which is the large-scale and confident identification of metabolites. PlantMAT uses informed phytochemical knowledge for the prediction of plant natural products such as saponins and glycosylated flavonoids through combinatorial enumeration of aglycone, glycosyl, and acyl subunits. Many of the predicted structures have yet to be characterized and are absent from traditional chemical databases, but have a higher probability of being present in planta. PlantMAT allows users to operate an automated and streamlined workflow for metabolite annotation from a user-friendly interface within Microsoft Excel, a familiar, easily accessed program for chemists and biologists. The usefulness of PlantMAT is exemplified using ultrahigh-performance liquid chromatography-electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-QTOF-MS/MS) metabolite profiling data of saponins and glycosylated flavonoids from the model legume Medicago truncatula. The results demonstrate PlantMAT substantially increases the chemical/metabolic space of traditional chemical databases. Ten of the PlantMAT-predicted identifications were validated and confirmed through the isolation of the compounds using ultrahigh-performance liquid chromatography-mass spectrometry-solid-phase extraction (UHPLC-MS-SPE) followed by de novo structural elucidation using 1D/2D nuclear magnetic resonance (NMR). It is further demonstrated that PlantMAT enables the dereplication of previously identified metabolites and is also a powerful tool for the discovery of structurally novel metabolites.


Assuntos
Flavonoides/metabolismo , Medicago truncatula/metabolismo , Metabolômica , Extratos Vegetais/metabolismo , Saponinas/metabolismo , Software , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Glicosilação , Medicago truncatula/química , Extratos Vegetais/análise , Saponinas/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
17.
Plant Physiol ; 167(4): 1699-716, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667316

RESUMO

Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased ß-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4'-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4'-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Metabolômica , Doenças das Plantas/imunologia , Rhizobium/fisiologia , Transcriptoma , Ascomicetos/fisiologia , Flavonoides/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Modelos Biológicos , Fixação de Nitrogênio , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose
18.
Plant Physiol ; 167(4): 1685-98, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25670818

RESUMO

Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Metaboloma/genética , Metabolômica , Arabidopsis/genética , Arabidopsis/metabolismo , Redes e Vias Metabólicas , Mutação
19.
Nat Prod Rep ; 32(2): 212-29, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25342293

RESUMO

Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.


Assuntos
Produtos Biológicos , Metabolômica , Plantas , Alcaloides/química , Alcaloides/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cristalografia por Raios X , Flavonoides/química , Flavonoides/isolamento & purificação , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Plantas/química , Plantas/enzimologia , Plantas/genética , Terpenos/química , Terpenos/isolamento & purificação
20.
Anal Chem ; 87(18): 9114-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26247233

RESUMO

Liquid chromatography/mass spectrometry (LC/MS) metabolite profiling has been widely used in comparative metabolomics studies; however, LC/MS-based comparative metabolomics currently faces several critical challenges. One of the greatest challenges is how to effectively align metabolites across different LC/MS profiles; a single metabolite can give rise to multiple peak features, and the grouped peak features that can be used to construct a spectrum pattern of single metabolite can vary greatly between biochemical experiments and even between instrument runs. Another major challenge is that the observed retention time for a single metabolite can also be significantly affected by experimental conditions. To overcome these two key challenges, we present a novel metabolite-based alignment approach entitled MET-XAlign to align metabolites across LC/MS metabolomics profiles. MET-XAlign takes the deduced molecular mass and estimated compound retention time information that can be extracted by our previously published tool, MET-COFEA, and aligns metabolites based on this information. We demonstrate that MET-XAlign is able to cross-align metabolite compounds, either known or unknown, in LC/MS profiles not only across different samples but also across different biological experiments and different electrospray ionization modes. Therefore, our proposed metabolite-based cross-alignment approach is a great step forward and its implementation, MET-XAlign, is a very useful tool in LC/MS-based comparative metabolomics. MET-XAlign has been successfully implemented with core algorithm coding in C++, making it very efficient, and visualization interface coding in the Microsoft.NET Framework. The MET-XAlign software along with demonstrative data is freely available at http://bioinfo.noble.org/manuscript-support/met-xalign/ .


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Estatística como Assunto/métodos , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA