Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(23): e2308749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161265

RESUMO

Monosodium urate (MSU) crystal deposition in joints can lead to the infiltration of neutrophils and macrophages, and their activation plays a critical role in the pathological progress of gout. However, the role of MSU crystal physicochemical properties in inducing cell death in neutrophil and macrophage is still unclear. In this study, MSU crystals of different sizes are synthesized to explore the role of pyroptosis in gout. It is demonstrated that MSU crystals induce size-dependent pyroptotic cell death in bone marrow-derived neutrophils (BMNs) and bone marrow-derived macrophages (BMDMs) by triggering NLRP3 inflammasome-dependent caspase-1 activation and subsequent formation of N-GSDMD. Furthermore, it is demonstrated that the size of MSU crystal also determines the formation of neutrophil extracellular traps (NETs) and aggregated neutrophil extracellular traps (aggNETs), which are promoted by the addition of interleukin-1ß (IL-1ß). Based on these mechanistic understandings, it is shown that N-GSDMD oligomerization inhibitor, dimethyl fumarate (DMF), inhibits MSU crystal-induced pyroptosis in BMNs and J774A.1 cells, and it further alleviates the acute inflammatory response in MSU crystals-induced gout mice model. This study elucidates that MSU crystal-induced pyroptosis in neutrophil and macrophage is critical for the pathological progress of gout, and provides a new therapeutic approach for the treatment of gout.


Assuntos
Gota , Macrófagos , Neutrófilos , Piroptose , Ácido Úrico , Gota/patologia , Gota/metabolismo , Animais , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Camundongos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo
2.
J Pharmacol Exp Ther ; 390(1): 45-52, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38272670

RESUMO

Therapeutic vaccines containing aluminum adjuvants have been widely used in the treatment of tumors due to their powerful immune-enhancing effects. However, the neurotoxicity of aluminum adjuvants with different physicochemical properties has not been completely elucidated. In this study, a library of engineered aluminum oxyhydroxide (EAO) and aluminum hydroxyphosphate (EAHP) nanoparticles was synthesized to determine their neurotoxicity in vitro. It was demonstrated that the surface charge of EAHPs and size of EAOs did not affect the cytotoxicity in N9, bEnd.3, and HT22 cells; however, soluble aluminum ions trigger the cytotoxicity in three different cell lines. Moreover, soluble aluminum ions induce apoptosis in N9 cells, and further mechanistic studies demonstrated that this apoptosis was mediated by mitochondrial reactive oxygen species generation and mitochondrial membrane potential loss. This study identifies the safety profile of aluminum-containing salts adjuvants in the nervous system during therapeutic vaccine use, and provides novel design strategies for their safer applications. SIGNIFICANCE STATEMENT: In this study, it was demonstrated that engineered aluminum oxyhydroxide and aluminum hydroxyphosphate nanoparticles did not induce cytotoxicity in N9, bEnd.3, and HT22 cells. In comparation, soluble aluminum ions triggered significant cytotoxicity in three different cell lines, indicating that the form in which aluminum is presenting may play a crucial role in its safety. Moreover, apoptosis induced by soluble aluminum ions was dependent on mitochondrial damage. This study confirms the safety of engineered aluminum adjuvants in vaccine formulations.


Assuntos
Adjuvantes Imunológicos , Apoptose , Vacinas Anticâncer , Nanopartículas , Adjuvantes Imunológicos/farmacologia , Animais , Nanopartículas/química , Apoptose/efeitos dos fármacos , Camundongos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Linhagem Celular , Alumínio/química , Alumínio/toxicidade , Compostos de Alumínio/toxicidade
3.
Biomacromolecules ; 25(5): 3044-3054, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38662992

RESUMO

Photodynamic therapy (PDT) has demonstrated efficacy in eliminating local tumors, yet its effectiveness against metastasis is constrained. While immunotherapy has exhibited promise in a clinical context, its capacity to elicit significant systemic antitumor responses across diverse cancers is often limited by the insufficient activation of the host immune system. Consequently, the combination of PDT and immunotherapy has garnered considerable attention. In this study, we developed pH-responsive porphyrin-peptide nanosheets with tumor-targeting capabilities (PRGD) that were loaded with the IDO inhibitor NLG919 for a dual application involving PDT and immunotherapy (PRGD/NLG919). In vitro experiments revealed the heightened cellular uptake of PRGD/NLG919 nanosheets in tumor cells overexpressing αvß3 integrins. The pH-responsive PRGD/NLG919 nanosheets demonstrated remarkable singlet oxygen generation and photocytotoxicity in HeLa cells in an acidic tumor microenvironment. When treating HeLa cells with PRGD/NLG919 nanosheets followed by laser irradiation, a more robust adaptive immune response occurred, leading to a substantial proliferation of CD3+CD8+ T cells and CD3+CD4+ T cells compared to control groups. Our pH-responsive targeted PRGD/NLG919 nanosheets therefore represent a promising nanosystem for combination therapy, offering effective PDT and an enhanced host immune response.


Assuntos
Imunoterapia , Nanoestruturas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Nanoestruturas/química , Células HeLa , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Porfirinas/química , Porfirinas/farmacologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Imidazóis , Isoindóis
4.
Inorg Chem ; 63(13): 5773-5778, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498977

RESUMO

Seawater electrolysis presents a promising avenue for green hydrogen production toward a carbon-free society. However, the electrode materials face significant challenges including severe chlorine-induced corrosion and high reaction overpotential, resulting in low energy conversion efficiency and low current density operation. Herein, we put forward a nanoporous nickel (npNi) cathode with high chlorine corrosion resistance for energy-efficient seawater electrolysis at industrial current densities (0.4-1 A cm-2). With the merits of an electrostatic chlorine-resistant surface, modulated Ni active sites, and a robust three-dimensional open structure, the npNi electrode showed a low hydrogen evolution reaction overpotential of 310 mV and a high electricity-hydrogen conversion efficiency of 59.7% at 400 mA cm-2 in real seawater and outperformed most Ni-based seawater electrolysis cathodes in recent publications and the commercial Ni foam electrode (459 mV, 46.4%) under the same test condition. In situ electrochemical impedance spectroscopy, high-frame-rate optical microscopy, and first-principles calculation revealed that the improved corrosion resistance, enhanced intrinsic activity, and mass transfer were responsible for the lowered electrocatalytic overpotential and enhanced energy efficiency.

5.
Handb Exp Pharmacol ; 284: 113-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37059911

RESUMO

Adjuvants have been extensively and essentially formulated in subunits and certain inactivated vaccines for enhancing and prolonging protective immunity against infections and diseases. According to the types of infectious diseases and the required immunity, adjuvants with various acting mechanisms have been designed and applied in human vaccines. In this chapter, we introduce the advances in vaccine adjuvants based on nanomaterials and small molecules. By reviewing the immune mechanisms induced by adjuvants with different characteristics, we aim to establish structure-activity relationships between the physicochemical properties of adjuvants and their immunostimulating capability for the development of adjuvants for more effective preventative and therapeutic vaccines.


Assuntos
Nanoestruturas , Vacinas , Humanos , Adjuvantes de Vacinas , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química
6.
Nano Lett ; 23(16): 7552-7560, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37494635

RESUMO

Zwitterionic polymers have emerged as promising trans-mucus nanocarriers due to their superior antifouling properties. However, for pH-sensitive zwitterionic polymers, the effect of the pH microenvironment on their trans-mucus fate remains unclear. In this work, we prepared a library of zwitterionic polydopamine-modified silica nanoparticles (SiNPs-PDA) with an isoelectric point of 5.6. Multiple-particle tracking showed that diffusion of SiNPs-PDA in mucus with a pH value of 5.6 was 3 times faster than that in mucus with pH value 3.0 or 7.0. Biophysical analysis found that the trans-mucus behavior of SiNPs-PDA was mediated by hydrophobic and electrostatic interactions and hydrogen bonding between mucin and the particles. Furthermore, the particle distribution in the stomach, intestine, and lung demonstrated the pH-mediated mucus penetration behavior of the SiNPs-PDA. This study reveals the pH-mediated mucus penetration behavior of zwitterionic nanomaterials, which provides rational design strategies for zwitterionic polymers as nanocarriers in various mucus microenvironments.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Dióxido de Silício/química , Polímeros/química , Nanopartículas/química , Muco , Concentração de Íons de Hidrogênio
7.
J Org Chem ; 88(22): 16024-16037, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37917565

RESUMO

An asymmetric synthesis of chiral 2,5-diketopiperazines by the Ugi-4CR/cyclization is exhibited. The employment of catalytic anionic chiral Co(III) complexes delivered α-propiolyl aminoamides in high yields with excellent enantioselectivities (31 examples, up to 95% ee). The following treatment of Ugi-adducts with PPh3 leads to chiral 2,5-DKPs without significant loss of enantioselectivities (26 examples, up to 91% ee).

8.
Fish Shellfish Immunol ; 134: 108571, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736844

RESUMO

The cellular transcription factors are known to play important roles in virus infection. The present study cloned and characterized a transcription factor CCAAT/Enhancer-binding protein homolog from the shrimp Penaeus vannamei (designates as PvCEBP), and explored its potential functions in white spot syndrome virus (WSSV) infection. PvCEBP has an open reading frame (ORF) of 864 bp encoding a putative protein of 287 amino acids, which contained a highly C-terminal conserved bZIP domain. Phylogenetic tree analysis showed that PvCEBP was evolutionarily clustered with invertebrate CEBPs and closely related to the CEBP of Homarus americanus. Quantitative real-time PCR (qPCR) analysis revealed that PvCEBP was expressed in all examined shrimp tissues, with transcript levels increased in shrimp hemocytes and gill upon WSSV challenge. Furthermore, knockdown of PvCEBP mediated by RNA interference significantly decreased the expression of WSSV genes and viral loads, while enhanced the shrimp survival rate under WSSV challenge. In silico prediction and reporter gene assays demonstrated that PvCEBP could activate the promoter activity of the viral immediate-early gene ie1. Collectively, our findings suggest that PvCEBP is annexed by WSSV to promote its propagation by enhancing the expression of viral immediate-early genes.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Fatores de Transcrição/genética , Penaeidae/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Filogenia , Sequência de Aminoácidos , Proteínas de Artrópodes/genética
9.
Ecotoxicol Environ Saf ; 258: 114969, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37167736

RESUMO

2,2'-Dibromobisphenol A (2,2'-DiBBPA) is frequently detected in the environment. However, the mobility of 2,2'-DiBBPA in the soil environment is poorly understood. The present study examined the effects of soil components such as the NaClO-resistant fraction, dithionite-citrate-bicarbonate -demineralized fraction, humin fraction, black carbon, DOC-removed fraction, exogenous dissolved organic carbon and heavy metal cations on the adsorption of 2,2'-DiBBPA on several types of agricultural soils. The adsorption isotherms on soils and soil components were well fitted to the linear isotherm equation. 2,2'-DiBBPA sorption onto soils was dominated by soil organic matter content (SOM) and affected by exogenous dissolved organic carbon. Linear regression relationships between adsorption capacity (Kd) and soil characteristics were evaluated to predict partitioning of 2,2'-DiBBPA. Black carbon played a predominant role in the adsorption of 2,2'-DiBBPA. Heavy metal ions significantly inhibited the adsorptive behavior of 2,2'-DiBBPA under alkaline conditions. Semiempirical linear relationships were observed between biota-sediment accumulation factors (1.18-2.47)/logarithm of bioconcentration factors (BCFs, 2.49-2.52) of 2,2'-DiBBPA in lugworms and Kd. These results allow for the prediction of the bioaccumulation of 2,2'-DiBBPA in other soils. Furthermore, values of log BCF > 1.0 indicate the preferential bioaccumulation of 2,2'-DiBBPA in biota. These data are of significance for understanding the migration of 2,2'-DiBBPA in agricultural soils and bioaccumulation in organisms.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Bioacumulação , Poluentes do Solo/análise , Matéria Orgânica Dissolvida , Adsorção , Carbono
10.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836684

RESUMO

Targeting thioredoxin reductase (TXNRD) with low-weight molecules is emerging as a high-efficacy anti-cancer strategy in chemotherapy. Sanguinarine has been reported to inhibit the activity of TXNRD1, indicating that benzophenanthridine alkaloid is a fascinating chemical entity in the field of TXNRD1 inhibitors. In this study, the inhibition of three benzophenanthridine alkaloids, including chelerythrine, sanguinarine, and nitidine, on recombinant TXNRD1 was investigated, and their anti-cancer mechanisms were revealed using three gastric cancer cell lines. Chelerythrine and sanguinarine are more potent inhibitors of TXNRD1 than nitidine, and the inhibitory effects take place in a dose- and time-dependent manner. Site-directed mutagenesis of TXNRD1 and in vitro inhibition analysis proved that chelerythrine or sanguinarine is primarily bound to the Sec498 residue of the enzyme, but the neighboring Cys497 and remaining N-terminal redox-active cysteines could also be modified after the conjugation of Sec498. With high similarity to sanguinarine, chelerythrine exhibited cytotoxic effects on multiple gastric cancer cell lines and suppressed the proliferation of tumor spheroids derived from NCI-N87 cells. Chelerythrine elevated cellular levels of reactive oxygen species (ROS) and induced endoplasmic reticulum (ER) stress. Moreover, the ROS induced by chelerythrine could be completely suppressed by the addition of N-acetyl-L-cysteine (NAC), and the same is true for sanguinarine. Notably, Nec-1, an RIPK1 inhibitor, rescued the chelerythrine-induced rapid cell death, indicating that chelerythrine triggers necroptosis in gastric cancer cells. Taken together, this study demonstrates that chelerythrine is a novel inhibitor of TXNRD1 by targeting Sec498 and possessing high anti-tumor properties on multiple gastric cancer cell lines by eliciting necroptosis.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias Gástricas , Humanos , Benzofenantridinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Necroptose , Alcaloides/farmacologia , Alcaloides/química , Oxirredução
11.
Environ Sci Technol ; 56(18): 12785-12792, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067032

RESUMO

E-waste recycling has been a hot topic around the world. This Feature revisits the issues raised by our previous Feature 10 years ago, i.e., the environmental, economic, and social benefits of e-waste recycling, using China as an example. The decadal journey of e-waste recycling has witnessed a giant leap from haphazard disposal initially to regulated disassembly presently. Specific successful stories include cleaned environment and reduced human exposure, significant advantages of urban mining over mineral mining, additional employment opportunities, and improved legislation system related to e-waste recycling. Strict legislation systems related to e-waste management based on the principle of Extended Producer Responsibility are key to the sustainable development of the e-waste recycling sector in China. The experiences and lessons learned in China would provide valuable guidelines for other developing countries.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , China , Resíduo Eletrônico/análise , Humanos , Mineração , Reciclagem
12.
Plant Dis ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700518

RESUMO

Tomato (Solanum lycopersicum) is a staple vegetable across the world. In October 2019, leaf spots were observed on tomato (cv. Tianmi) in a greenhouse in JiZhou District Tianjin, China(117°10 'E; 39°55 'N). Symptoms initially appeared as small brown spots, which gradually expanded and turned into circular, oval or irregular spots (some spots with distinct concentric zones). In severe cases, some spots coalesced and eventually covered the whole leaf. Disease incidence ranged between 12 and 18%. Twenty symptomatic leaves from five plants were collected and cut into small pieces, surface disinfested in 2% NaClO for 60 s, rinsed three times in sterile water, and subsequently plated on potato dextrose agar (PDA). Plates were incubated at 25°C in the dark for 7 days. A total of 102 isolates were obtained and 92 isolates had the same morphology. Colonies were initially white with abundant aerial mycelia and formed sporodochia with conidial masses in olivaceous green concentric rings. All isolates formed single-celled, hyaline, and rod-shaped conidia were 4.91 to 7.43 (avg. 6.53±0.72) × 1.41 to 2.45 (avg. 2.11±0.30)µm with rounded ends (n=50). Conidiophores were highly branched. These characteristics resembled a Paramyrothecium-like fungus (Lombard et al. 2016). The genomic DNA of three representative single-spored isolates TJJXPF1-3 were extracted and the internal transcribed spacer (ITS) region, ß-tubulin (tub2), large subunit ribosomal RNA (LSU), calmodulin (cmdA) and translation elongation factor 1-alpha (tef1) genes were amplified and sequenced using the primer pairs ITS4/ITS5 (White et al. 1990), Bt2a/Bt2b (Glass and Donaldson 1995), LR0R/LR5 (Rehner and Samuels 1995; Vilgalys and Hester 1990), CAL-228F/CAL2Rd (Carbone and Kohn 1999; Groenewald et al. 2013) and EF1-728F/EF2 (O'Donnell et al. 1998), respectively. All sequences were deposited in GenBank (ITS: MW463444, OM368178, OM368179; tub2: MW269542,OM714930,OM714931; LSU: OM349050, OM397398, OM390582; cmdA: MW280443, OM350474, OM350476; tef1: MW560083, OM350475, OM350477). BLASTN analysis showed 99.3-100% similarity with reference isolate QB1 of P. foliicola (MK335967, MT415353, MT415362, MT415356 and MT415359). Multilocus phylogenetic analysis showed that TJJXPF1-3 best grouped with the P. foliicola clade, which was identified by morphological characteristics and phylogenetic analysis. To fulfill Koch's postulates, pathogenicity tests were conducted by spray-inoculation with a conidial suspension of isolate TJJXPF1 prepared with distilled water (1×105 conidia/mL) on five 45-day old tomato plants. Three healthy plants were sprayed with sterile water as control. All treatments were incubated in an artificial climate chamber (25°C, 80% RH, 12h light/12h dark ). After two weeks, leaf spots were observed on all inoculated plants, which were similar to those in the greenhouse of JiZhou District, while control plants remained asymptomatic. Additionally, the pathogens were reisolated from symptomatic leaves and three representative isolates TJJXPF4-6 were identified as P. foliicola. The pathogenicity tests were repeated thrice. To our knowledge, this is the first report of leaf spot caused by P. foliicola on tomato in China. This disease could be a serious threat to tomato production in the future. Our findings will help to differentiate this disease from other leaf spot-like diseases and develop disease control strategies.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36574602

RESUMO

Photodynamic therapy (PDT) is a highly promising therapeutic modality for cancer treatment. The development of stimuli-responsive photosensitizer nanomaterials overcomes certain limitations in clinical PDT. Herein, we report the rational design of a highly sensitive PEGylated photosensitizer-peptide nanofiber (termed PHHPEG 6 NF) that selectively aggregates in the acidic tumor and lysosomal microenvironment. These nanofibers exhibit acid-induced enhanced singlet oxygen generation, cellular uptake, and PDT efficacy in vitro , as well as fast tumor accumulation, long-term tumor imaging capacity and effective PDT in vivo . Moreover, based on the prolonged presence of the fluorescent signal at the tumor site, we demonstrate that PHHPEG 6 NFs can also be applied for prognostic monitoring of the efficacy of PDT in vivo , which would potentially guide cancer treatment. Therefore, these multifunctional PHHPEG 6 NFs allow control over the entire PDT process, from visualization of photosensitizer accumulation, via actual PDT to the assessment of the efficacy of the treatment.

14.
Arch Toxicol ; 95(1): 195-205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159582

RESUMO

Electronic cigarette (e-cigarette) use has been linked to recent acute lung injury case clusters in over 2000 patients and dozens of deaths in the United States, however, the mechanism leading to lung injury is not certain although ultrafine particles, heavy metals, volatile organic compounds, and other harmful ingredients have been implicated. To systematically evaluate e-cigarette toxicity, we generated e-cigarette aerosols by varying the puff numbers (20-480), nicotine contents (0-24 mg/mL), and collected e-cigarette samples through an impinger system for biological assays. The calculated samples' concentration ranged from 1.96 to 47.06 mg/mL. THP-1 monocyte-differentiated macrophages, BEAS-2B bronchial epithelial cells, wild-type C57BL/6 mice, and NF-κB-luc transgenic mice were used to test the effects of these samples. E-cigarette samples showed cytotoxicity to THP-1 cells and BEAS-2B in vitro, leading to increased oxidative stress, inflammatory cytokine production with or without nicotine, and cell death. Furthermore, aerosol generated from PG is more toxic than VG. The toxicity of e-cigarette samples is at least partially due to the reactive oxygen species and aldehydes, which are generated during the aerosolization processes by the e-cigarette device. After NF-κB-luc mice exposed with e-cigarette samples by oropharyngeal aspiration, NF-κB expressions were observed in a dose-response fashion with or without nicotine. In addition, the e-cigarette samples induced neutrophil infiltration, IL-1ß production, oxidative stress marker heme oxygenase-1 expression in wild-type C57BL/6 mice. These results suggested that oxidative stress, pro-inflammatory NF-κB pathway activation, and cell death are involved in e-cigarette aerosol-induced acute lung inflammation.


Assuntos
Vapor do Cigarro Eletrônico/toxicidade , Pulmão/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Aerossóis , Aldeídos/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Exposição por Inalação , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/genética , Infiltração de Neutrófilos/efeitos dos fármacos , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células THP-1
15.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 620-627, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33764372

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (Cas9)-based genome editing tool pCas/pTargetF system that we established previously has been widely used in Escherichia coli MG1655. However, this system failed to manipulate the genome of E. coli BL21(DE3), owing to the potential higher leaky transcription of the gRNA-pMB1 specific to pTargetF in this strain. In this study, we modified the pCas/pTargetF system by replacing the promoter of gRNA-pMB1 with a tightly regulated promoter PrhaB, changing the replicon of pCas to a nontemperature-sensitive replicon, adding the sacB gene into pCas, and replacing the original N20-specific sequence of pTargetF with ccdB gene. We call this updated system as pEcCas/pEcgRNA. We found that gRNA-pMB1 indeed showed a slightly higher leaky expression in the pCas/pTargetF system compared with pEcCas/pEcgRNA. We also confirmed that genome editing can successfully be performed in BL21(DE3) by pEcCas/pEcgRNA with high efficiency. The application of pEcCas/pEcgRNA was then expanded to the E. coli B strain BL21 StarTM (DE3), K-12 strains MG1655, DH5α, CGMCC3705, Nissle1917, W strain ATCC9637, and also another species of Enterobacteriaceae, Tatumella citrea DSM13699, without any specific modifications. Finally, the plasmid curing process was optimized to shorten the time from $\sim$60 h to $\sim$32 h. The entire protocol (including plasmid construction, editing, electroporation and mutant verification, and plasmid elimination) took only $\sim$5.5 days per round in the pEcCas/pEcgRNA system, whereas it took $\sim$7.5 days in the pCas/pTargetF system. This study established a faster-acting genome editing tool that can be used in a wider range of E. coli strains and will also be useful for other Enterobacteriaceae species.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli/genética , Edição de Genes , Genoma Bacteriano , Plasmídeos/genética
16.
Chem Soc Rev ; 48(16): 4387-4400, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31237282

RESUMO

Bioinspired nanostructures can be the ideal functional smart materials to bridge the fundamental biology, biomedicine and nanobiotechnology fields. Among them, short peptides are among the most preferred building blocks as they can self-assemble to form versatile supramolecular architectures displaying unique physical and chemical properties, including intriguing optical features. Herein, we discuss the progress made over the past few decades in the design and characterization of optical short peptide nanomaterials, focusing on their intrinsic photoluminescent and waveguiding performances, along with the diverse modulation strategies. We review the complicated optical properties and the advanced applications of photoactive short peptide self-assemblies, including photocatalysis, as well as photothermal and photodynamic therapy. The diverse advantages of photoactive short peptide self-assemblies, such as eco-friendliness, morphological and functional flexibility, and ease of preparation and modification, endow them with the capability to potentially serve as next-generation, bio-organic optical materials, allowing the bridging of the optics world and the nanobiotechnology field.


Assuntos
Nanoestruturas/química , Peptídeos/química , Catálise , Glucose/análise , Humanos , Hidrogéis/química , Luz , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Porfirinas/química , Porfirinas/uso terapêutico
17.
Nano Lett ; 19(7): 4478-4489, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31244230

RESUMO

Silver nanoparticles (Ag NPs) have promising plasmonic properties, however, they are rarely used in biomedical applications because of their potent toxicity. Herein, an electron compensation effect from Au to Ag was applied to design safe Au@Ag core-shell NPs. The Ag shell thickness was precisely regulated to enable the most efficient electron enrichment in Ag shell of Au@Ag2.4 NPs, preventing Ag oxidation and subsequent Ag+ ion release. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure analysis revealed the electron transfer process from Au core to Ag shell, and inductively coupled plasma optical emission spectroscopy analysis confirmed the low Ag+ ion release from Au@Ag2.4 NPs. Bare Au@Ag2.4 NPs showed much lower toxicological responses than Ag NPs in BEAS-2B and Raw 264.7 cells and acute lung inflammation mouse models, and PEGylation of Au@Ag2.4 NPs could further improve their safety to L02 and HEK293T cells as well as mice through intravenous injection. Further, diethylthiatri carbocyanine iodide attached pAu@Ag2.4 NPs exhibited intense surface-enhanced Raman scattering signals and were used for Raman imaging of MCF7 cells and Raman biosensing in MCF7 tumor-bearing mice. This electron compensation effect opens up new opportunity for broadening biomedical application of Ag-based NPs.

18.
Angew Chem Int Ed Engl ; 59(46): 20582-20588, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687653

RESUMO

Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH-responsive transformable peptide-based nanoparticles for photodynamic therapy (PDT) with prolonged tumor retention times. The self-assembled peptide-porphyrin nanoparticles transformed into nanofibers when exposed to the acidic tumor microenvironment, which was mainly driven by enhanced intermolecular hydrogen bond formation between the protonated molecules. The nanoparticle transformation into fibrils improved their singlet oxygen generation ability and enabled high accumulation and long-term retention at tumor sites. Strong fluorescent signals of these nanomaterials were detected in tumor tissue up to 7 days after administration. Moreover, the peptide assemblies exhibited excellent anti-tumor efficacy via PDT in vivo. This in situ fibrillar transformation strategy could be utilized to design effective stimuli-responsive biomaterials for long-term imaging and therapy.


Assuntos
Ácidos/química , Nanoestruturas/química , Peptídeos/química , Fotoquimioterapia/métodos , Humanos , Concentração de Íons de Hidrogênio , Fármacos Fotossensibilizantes/química , Porfirinas/química , Análise Espectral/métodos , Microambiente Tumoral
19.
Langmuir ; 35(45): 14688-14695, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31635450

RESUMO

Physicochemical properties of nanomaterials play important roles in determining their toxicological profiles during nano-biointeraction. Among them, surface modification is one of the most effective manners to tune the cytotoxicity induced by nanomaterials. However, currently, there is no consistency in surface modification including moiety types and quantities considering the conflicting toxicological profiles of particles across different studies. In this study, in order to systematically investigate how the moiety density affects cytotoxicity of NPs, we chose three different types of functional groups, that is, -NH2, -COOH, and -PEG, and further controlled their densities on modified Stöber silica nanoparticles (NPs). We demonstrated that densities of functional groups could significantly affect the cytotoxicities of Stöber silica NPs. Regardless of the types of functional groups, high grafting densities could ameliorate the cytotoxicities induced by Stöber silica NPs in macrophages, for example, J774A.1 and N9 cells. When equal amounts of functional groups were present, the cell viability increased in the order of -COOH < -NH2 < -PEG. Furthermore, it was shown that surface modification could significantly affect the quantities of the surface silanol, which is the determining factor that affects their cytotoxicity. These results show that it is critical to control the surface moiety both quantitatively and qualitatively, which can tune the interaction outcomes at the nano-bio interface. The results found in this article provide useful guidance to adjust nanomaterial cytotoxicity for safer biomedical applications.


Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas/química , Dióxido de Silício/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Tamanho da Partícula , Dióxido de Silício/síntese química , Dióxido de Silício/química , Relação Estrutura-Atividade , Propriedades de Superfície
20.
Angew Chem Int Ed Engl ; 58(4): 1110-1114, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30517771

RESUMO

A proton gradient across a lipid membrane is required for the production of biochemical fuel. Much effort has been devoted to reactions involving proton production in biomimetic assembled architectures under mild conditions. Herein, we explored thiol-based self-assembled monolayer chemistry on a naked gold surface for the production of biochemical fuel. Protons are generated when alkanethiols self-assemble on a gold surface, and the proton yield can be tuned by the choice of thiol and by variation of the procedure used for the deposition of gold. Consequently, the proton gradient across a lipid membrane above the gold surface can be modulated to vary the production rate of biochemical fuel performed by lipid-embedded motor proteins. Our work presents evidence that a simple and efficient abiotic chemical reaction in a well-defined biohybrid system can convert unnatural chemicals, namely alkanethiols, into bioenergy molecules, a finding that has a great potential in biofuel-driven catalysis and devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA