Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(6): 1634-1646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460680

RESUMO

BACKGROUND: Systemic allergic reactions (sARs) following coronavirus disease 2019 (COVID-19) mRNA vaccines were initially reported at a higher rate than after traditional vaccines. OBJECTIVE: We aimed to evaluate the safety of revaccination in these individuals and to interrogate mechanisms underlying these reactions. METHODS: In this randomized, double-blinded, phase 2 trial, participants aged 16 to 69 years who previously reported a convincing sAR to their first dose of COVID-19 mRNA vaccine were randomly assigned to receive a second dose of BNT162b2 (Comirnaty) vaccine and placebo on consecutive days in a blinded, 1:1 crossover fashion at the National Institutes of Health. An open-label BNT162b2 booster was offered 5 months later if the second dose did not result in severe sAR. None of the participants received the mRNA-1273 (Spikevax) vaccine during the study. The primary end point was recurrence of sAR following second dose and booster vaccination; exploratory end points included biomarker measurements. RESULTS: Of 111 screened participants, 18 were randomly assigned to receive study interventions. Eight received BNT162b2 second dose followed by placebo; 8 received placebo followed by BNT162b2 second dose; 2 withdrew before receiving any study intervention. All 16 participants received the booster dose. Following second dose and booster vaccination, sARs recurred in 2 participants (12.5%; 95% CI, 1.6 to 38.3). No sAR occurred after placebo. An anaphylaxis mimic, immunization stress-related response (ISRR), occurred more commonly than sARs following both vaccine and placebo and was associated with higher predose anxiety scores, paresthesias, and distinct vital sign and biomarker changes. CONCLUSIONS: Our findings support revaccination of individuals who report sARs to COVID-19 mRNA vaccines. Distinct clinical and laboratory features may distinguish sARs from ISRRs.


Assuntos
Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Pessoa de Meia-Idade , Masculino , Adulto , Feminino , Método Duplo-Cego , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , Idoso , Adolescente , Adulto Jovem , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Recidiva , Vacinação , Vacina de mRNA-1273 contra 2019-nCoV , Estudos Cross-Over
2.
Chem Commun (Camb) ; 60(11): 1412-1415, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205596

RESUMO

A carbazole-based artificial light-harvesting system (LHS) was successfully fabricated based on the supramolecular assembly of AIE-enhanced donor (CTD), water-soluble phosphate-pillar[5]arene (WPP5), and eosin Y (ESY) acceptor. The formed WPP5-CTD possessed remarkable AIE emission, featuring an ideal energy donor for light harvesting. After encapsulation of ESY, the energy of WPP5-CTD was efficiently transferred to ESY in WPP5-CTD-ESY, and the antenna effect was 38.5, which was much higher than that of recently reported LHSs. Notably, WPP5-CTD-ESY was successfully utilized as a photocatalyst to realize the cross-coupling dehydrogenation reaction of diphenylphosphine oxide and benzothiazole derivatives, suggesting great potential for aqueous photocatalytic applications of this LHS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA