Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(9): e1011423, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656743

RESUMO

There are many contrasting results concerning the effectiveness of Test-Trace-Isolate (TTI) strategies in mitigating SARS-CoV-2 spread. To shed light on this debate, we developed a novel static-temporal multiplex network characterizing both the regular (static) and random (temporal) contact patterns of individuals and a SARS-CoV-2 transmission model calibrated with historical COVID-19 epidemiological data. We estimated that the TTI strategy alone could not control the disease spread: assuming R0 = 2.5, the infection attack rate would be reduced by 24.5%. Increased test capacity and improved contact trace efficiency only slightly improved the effectiveness of the TTI. We thus investigated the effectiveness of the TTI strategy when coupled with reactive social distancing policies. Limiting contacts on the temporal contact layer would be insufficient to control an epidemic and contacts on both layers would need to be limited simultaneously. For example, the infection attack rate would be reduced by 68.1% when the reactive distancing policy disconnects 30% and 50% of contacts on static and temporal layers, respectively. Our findings highlight that, to reduce the overall transmission, it is important to limit contacts regardless of their types in addition to identifying infected individuals through contact tracing, given the substantial proportion of asymptomatic and pre-symptomatic SARS-CoV-2 transmission.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Busca de Comunicante , Distanciamento Físico
2.
J Math Biol ; 87(2): 29, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452969

RESUMO

As there are no targeted medicines or vaccines for newly emerging infectious diseases, isolation among communities (villages, cities, or countries) is one of the most effective intervention measures. As such, the number of intercommunity edges ([Formula: see text]) becomes one of the most important factor in isolating a place since it is closely related to normal life. Unfortunately, how [Formula: see text] affects epidemic spread is still poorly understood. In this paper, we quantitatively analyzed the impact of [Formula: see text] on infectious disease transmission by establishing a four-dimensional [Formula: see text] edge-based compartmental model with two communities. The basic reproduction number [Formula: see text] is explicitly obtained subject to [Formula: see text] [Formula: see text]. Furthermore, according to [Formula: see text] with zero [Formula: see text], epidemics spread could be classified into two cases. When [Formula: see text] for the case 2, epidemics occur with at least one of the reproduction numbers within communities greater than one, and otherwise when [Formula: see text] for case 1, both reproduction numbers within communities are less than one. Remarkably, in case 1, whether epidemics break out strongly depends on intercommunity edges. Then, the outbreak threshold in regard to [Formula: see text] is also explicitly obtained, below which epidemics vanish, and otherwise break out. The above two cases form a severity-based hierarchical intervention scheme for epidemics. It is then applied to the SARS outbreak in Singapore, verifying the validity of our scheme. In addition, the final size of the system is gained by demonstrating the existence of positive equilibrium in a four-dimensional coupled system. Theoretical results are also validated through numerical simulation in networks with the Poisson and Power law distributions, respectively. Our results provide a new insight into controlling epidemics.


Assuntos
Doenças Transmissíveis , Epidemias , Humanos , Doenças Transmissíveis/epidemiologia , Modelos Biológicos , Redes Comunitárias , Epidemias/prevenção & controle , Simulação por Computador , Número Básico de Reprodução
3.
BMC Infect Dis ; 22(1): 880, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424534

RESUMO

The Omicron transmission has infected nearly 600,000 people in Shanghai from March 26 to May 31, 2022. Combined with different control measures taken by the government in different periods, a dynamic model was constructed to investigate the impact of medical resources, shelter hospitals and aerosol transmission generated by clustered nucleic acid testing on the spread of Omicron. The parameters of the model were estimated by least square method and MCMC method, and the accuracy of the model was verified by the cumulative number of asymptomatic infected persons and confirmed cases in Shanghai from March 26 to May 31, 2022. The result of numerical simulation demonstrated that the aerosol transmission figured prominently in the transmission of Omicron in Shanghai from March 28 to April 30. Without aerosol transmission, the number of asymptomatic subjects and symptomatic cases would be reduced to 130,000 and 11,730 by May 31, respectively. Without the expansion of shelter hospitals in the second phase, the final size of asymptomatic subjects and symptomatic cases might reach 23.2 million and 4.88 million by May 31, respectively. Our results also revealed that expanded vaccination played a vital role in controlling the spread of Omicron. However, even if the vaccination rate were 100%, the transmission of Omicron should not be completely blocked. Therefore, other control measures should be taken to curb the spread of Omicron, such as widespread antiviral therapies, enhanced testing and strict tracking quarantine measures. This perspective could be utilized as a reference for the transmission and prevention of Omicron in other large cities with a population of 10 million like Shanghai.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , China/epidemiologia , Quarentena , Aerossóis e Gotículas Respiratórios
4.
J Math Biol ; 85(5): 50, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36227425

RESUMO

Vegetation patterns with a variety of structures is amazing phenomena in arid or semi-arid areas, which can identify the evolution law of vegetation and are typical signals of ecosystem functions. Many achievements have been made in this respect, yet the mechanisms of uptake-diffusion feedback on the pattern structures of vegetation is not fully understood. To well reveal the influences of parameters perturbation on the pattern formation of vegetation, we give a comprehensive analysis on a vegetation-water model in the forms of reaction-diffusion equation which is posed by Zelnik et al. (Proc Natl Acad Sci 112:12,327-12,331, 2015). We obtain the exact parameters range for stationary patterns and show the dynamical behaviors near the bifurcation point based on nonlinear analysis. It is found that the model has the properties of spot, labyrinth and gap patterns. Moreover, water diffusion rate prohibits the growth of vegetation while shading parameter promotes the increase of vegetation biomass. Our results show that gradual transitions from uniform state to gap pattern can occur for suitable value of parameters which may induce the emergence of desertification.


Assuntos
Clima Desértico , Ecossistema , Retroalimentação , Modelos Biológicos , Água
5.
Chaos Solitons Fractals ; 146: 110885, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33776250

RESUMO

Optimal economic evaluation is pivotal in prioritising the implementation of non-pharmaceutical and pharmaceutical interventions in the control of diseases. Governments, decision-makers and policy-makers broadly need information about the effectiveness of a control intervention concerning its cost-benefit to evaluate whether a control intervention offers the best value for money. The outbreak of COVID-19 in December 2019, and the eventual spread to other parts of the world, have pushed governments and health authorities to take drastic socioeconomic, sociocultural and sociopolitical measures to curb the spread of the virus, SARS-CoV-2. To help policy-makers, health authorities and governments, we propose a Susceptible, Exposed, Asymptomatic, Quarantined asymptomatic, Severely infected, Hospitalized, Recovered, Recovered asymptomatic, Deceased, and Protective susceptible (individuals who observe health protocols) compartmental structure to describe the dynamics of COVID-19. We fit the model to real data from Ghana and Egypt to estimate model parameters using standard incidence rate. Projections for disease control and sensitivity analysis are presented using MATLAB. We noticed that multiple peaks (waves) of COVID-19 for Ghana and Egypt can be prevented if stringent health protocols are implemented for a long time and/or the reluctant behaviour on the use of protective equipment by individuals are minimized. The sensitivity analysis suggests that: the rate of diagnoses and testing, the rate of quarantine through doubling enhanced contact tracing, adhering to physical distancing, adhering to wearing of nose masks, sanitizing-washing hands, media education remains the most effective measures in reducing the control reproduction number R c , to less than unity in the absence of vaccines and therapeutic drugs in Ghana and Egypt. Optimal control and cost-effectiveness analysis are rigorously studied. The main finding is that having two controls (transmission reduction and case isolation) is better than having one control, but is economically expensive. In case only one control is affordable, then transmission reduction is better than case isolation. Hopefully, the results of this research should help policy-makers when dealing with multiple waves of COVID-19.

6.
Biophys J ; 118(4): 898-908, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31699333

RESUMO

Defective nitrate signaling in plants causes disorder in nitrogen metabolism, and it negatively affects nitrate transport systems, which toggle between high- and low-affinity modes in variable soil nitrate conditions. Recent discovery of a plasma membrane nitrate transceptor protein NRT1.1-a transporter cum sensor-provides a clue on this toggling mechanism. However, the general mechanistic description still remains poorly understood. Here, we illustrate adaptive responses and regulation of NRT1.1-mediated nitrate signaling in a wide range of extracellular nitrate concentrations. The results show that the homodimeric structure of NRT1.1 and its dimeric switch play an important role in eliciting specific cytosolic calcium waves sensed by the calcineurin-B-like calcium sensor CBL9, which activates the kinase CIPK23, in low nitrate concentration that is, however, impeded in high nitrate concentration. Nitrate binding at the high-affinity unit initiates NRT1.1 dimer decoupling and priming of the Thr101 site for phosphorylation by CIPK23. This phosphorylation stabilizes the NRT1.1 monomeric state, acting as a high-affinity nitrate transceptor. However, nitrate binding in both monomers, retaining the unmodified NRT1.1 state through dimerization, attenuates CIPK23 activity and thereby maintains the low-affinity mode of nitrate signaling and transport. This phosphorylation-led modulation of NRT1.1 activity shows bistable behavior controlled by an incoherent feedforward loop, which integrates nitrate-induced positive and negative regulatory effects on CIPK23. These results, therefore, advance our molecular understanding of adaptation in fluctuating nutrient availability and are a way forward for improving plant nitrogen use efficiency.


Assuntos
Arabidopsis , Nitratos , Proteínas de Transporte de Ânions , Arabidopsis/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Plantas/metabolismo
7.
Nonlinear Dyn ; 101(3): 1981-1993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32836805

RESUMO

Due to the strong infectivity of COVID-19, it spread all over the world in about three months and thus has been studied from different aspects including its source of infection, pathological characteristics, diagnostic technology and treatment. Yet, the influences of control strategies on the transmission dynamics of COVID-19 are far from being well understood. In order to reveal the mechanisms of disease spread, we present dynamical models to show the propagation of COVID-19 in Wuhan. Based on mathematical analysis and data analysis, we systematically explore the effects of lockdown and medical resources on the COVID-19 transmission in Wuhan. It is found that the later lockdown is adopted by Wuhan, the fewer people will be infected in Wuhan, and nevertheless it will have an impact on other cities in China and even the world. Moreover, the richer the medical resources, the higher the peak of new infection, but the smaller the final scale. These findings well indicate that the control measures taken by the Chinese government are correct and timely.

8.
Chaos Solitons Fractals ; 108: 196-204, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32288352

RESUMO

Research on the interplay between the dynamics on the network and the dynamics of the network has attracted much attention in recent years. In this work, we propose an information-driven adaptive model, where disease and disease information can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from further spreading. Simulation results and numerical analyses based on the pairwise approach indicate that the information-driven adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the epidemic prevalence at the final state significantly. In addition, the disease spreading and information diffusion pattern on the lattice as well as on a real-world network give visual representations about how the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore, we perform the local bifurcation analysis on four types of dynamical regions, including healthy, a continuous dynamic behavior, bistable and endemic, to understand the evolution of the observed dynamical behaviors. This work may shed some lights on understanding how information affects human activities on responding to epidemic spreading.

9.
Appl Math Comput ; 332: 437-448, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32287501

RESUMO

The interaction between disease and disease information on complex networks has facilitated an interdisciplinary research area. When a disease begins to spread in the population, the corresponding information would also be transmitted among individuals, which in turn influence the spreading pattern of the disease. In this paper, firstly, we analyze the propagation of two representative diseases (H7N9 and Dengue fever) in the real-world population and their corresponding information on Internet, suggesting the high correlation of the two-type dynamical processes. Secondly, inspired by empirical analyses, we propose a nonlinear model to further interpret the coupling effect based on the SIS (Susceptible-Infected-Susceptible) model. Both simulation results and theoretical analysis show that a high prevalence of epidemic will lead to a slow information decay, consequently resulting in a high infected level, which shall in turn prevent the epidemic spreading. Finally, further theoretical analysis demonstrates that a multi-outbreak phenomenon emerges via the effect of coupling dynamics, which finds good agreement with empirical results. This work may shed light on the in-depth understanding of the interplay between the dynamics of epidemic spreading and information diffusion.

10.
J Theor Biol ; 382: 309-19, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26210776

RESUMO

In this paper, we develop a complex network susceptible-infected-susceptible (SIS) model to investigate the impact of demographic factors on disease spreads. We carefully capture the transmission by short-time travelers, by assuming the susceptibles randomly travel to another community, stay for a daily time scale, and return. We calculate the basic reproductive number R0 and analyze the relevant stability of the equilibria (disease-free equilibrium and endemic equilibrium) of the model by applying limiting system theory and comparison principle. The results reveal that the disease-free equilibrium is globally asymptotically stable given R0<1, whereas the condition R0>1 leads to a globally asymptotically stable endemic equilibrium. Our numerical simulations show that demographic factors, such as birth, immigration, and short-time travels, play important roles in epidemic propagation from one community to another. Moreover, we quantitatively demonstrate how the distribution of individual's network degree would affect the result of disease transmission.


Assuntos
Doenças Transmissíveis/epidemiologia , Demografia , Epidemias , Características de Residência , Simulação por Computador , Suscetibilidade a Doenças , Humanos , Modelos Estatísticos , Análise Numérica Assistida por Computador
11.
Physica A ; 412: 137-148, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32308253

RESUMO

Time delay, accounting for constant incubation period or sojourn times in an infective state, widely exists in most biological systems like epidemiological models. However, the effect of time delay on spatial epidemic models is not well understood. In this paper, spatial pattern of an epidemic model with both nonlinear incidence rate and time delay is investigated. In particular, we mainly focus on the effect of time delay on the formation of spatial pattern. Through mathematical analysis, we gain the conditions for Hopf bifurcation and Turing bifurcation, and find exact Turing space in parameter space. Furthermore, numerical results show that time delay has a significant effect on pattern formation. The simulation results may enrich the finding of patterns and may well capture some key features in the epidemic models.

12.
Math Med Biol ; 41(1): 53-80, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38421157

RESUMO

Altay Prefecture, a typical arid region in northwestern China, has experienced the climate transition from warming-drying to warming-wetting since 1980s and has attracted widespread attention. Nonetheless, it is still unclear how climate change has influenced the distribution of vegetation in this region. In this paper, a reaction-diffusion model of the climate-vegetation system is proposed to study the impact of climate change (precipitation, temperature and carbon dioxide concentration) on vegetation patterns in Altay Prefecture. Our results indicate that the tendency of vegetation growth in Altay Prefecture improved gradually from 1985 to 2010. Under the current climate conditions, the increase of precipitation results in the change of vegetation pattern structures, and eventually vegetation coverage tends to be uniform. Moreover, we found that there exists an optimal temperature where the spot vegetation pattern structure remains stable. Furthermore, the increase in carbon dioxide concentration induces vegetation pattern transition. Based on four climate change scenarios of the Coupled Model Intercomparison Project Phase 6 (CMIP6), we used the power law range (PLR) to predict the optimal scenario for the sustainable development of the vegetation ecosystem in Altay Prefecture.


Assuntos
Mudança Climática , Ecossistema , Dióxido de Carbono , China , Temperatura
13.
Infect Dis Model ; 9(1): 56-69, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38130878

RESUMO

In this paper, with the method of epidemic dynamics, we assess the spread and prevalence of COVID-19 after the policy adjustment of prevention and control measure in December 2022 in Taiyuan City in China, and estimate the excess population deaths caused by COVID-19. Based on the transmission mechanism of COVID-19 among individuals, a dynamic model with heterogeneous contacts is established to describe the change of control measures and the population's social behavior in Taiyuan city. The model is verified and simulated by basing on reported case data from November 8th to December 5th, 2022 in Taiyuan city and the statistical data of the questionnaire survey from December 1st to 23rd, 2022 in Neijiang city. Combining with reported numbers of permanent residents and deaths from 2017 to 2021 in Taiyuan city, we apply the dynamic model to estimate theoretical population of 2022 under the assumption that there is no effect of COVID-19. In addition, we carry out sensitivity analysis to determine the propagation character of the Omicron strain and the effect of the control measures. As a result of the study, it is concluded that after adjusting the epidemic policy on December 6th, 2022, three peaks of infection in Taiyuan are estimated to be from December 22nd to 31st, 2022, from May 10th to June 1st, 2023, and from September 5th to October 13th, 2023, and the corresponding daily peaks of new cases can reach 400 000, 44 000 and 22 000, respectively. By the end of 2022, excess deaths can range from 887 to 4887, and excess mortality rate can range from 3.06% to 14.82%. The threshold of the infectivity of the COVID-19 variant is estimated 0.0353, that is if the strain infectivity is above it, the epidemic cannot be control with the previous normalization measures.

14.
ScientificWorldJournal ; 2013: 470646, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319369

RESUMO

An SEI autonomous model with logistic growth rate and its corresponding nonautonomous model are investigated. For the autonomous case, we give the attractive regions of equilibria and perform some numerical simulations. Basic demographic reproduction number R d is obtained. Moreover, only the basic reproduction number R 0 cannot ensure the existence of the positive equilibrium, which needs additional condition R d > R 1. For the nonautonomous case, by introducing the basic reproduction number defined by the spectral radius, we study the uniform persistence and extinction of the disease. The results show that for the periodic system the basic reproduction number is more accurate than the average reproduction number.


Assuntos
Epidemias/estatística & dados numéricos , Modelos Estatísticos , Estações do Ano , Número Básico de Reprodução/estatística & dados numéricos , Doenças Transmissíveis/epidemiologia , Epidemiologia/estatística & dados numéricos , Humanos , Matemática , Crescimento Demográfico , Fatores de Tempo
15.
Physica A ; 392(23): 5824-5835, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32362716

RESUMO

An SIS network model incorporating the influence of media coverage on transmission rate is formulated and analyzed. We calculate the basic reproduction number R 0 by utilizing the local stability of the disease-free equilibrium. Our results show that the disease-free equilibrium is globally asymptotically stable and that the disease dies out if R 0 is below 1; otherwise, the disease will persist and converge to a unique positive stationary state. This result may suggest effective control strategies to prevent disease through media coverage and education activities in finite-size scale-free networks. Numerical simulations are also performed to illustrate our results and to give more insights into the dynamical process.

16.
One Health ; 16: 100475, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36593980

RESUMO

Since Omicron began to spread in China, Shanghai has become one of the cities with more severe outbreaks. Under the comprehensive consideration of the vaccine coverage rate, the number of Fangcang shelter hospital beds and the number of designated hospital beds in Shanghai, this paper established a deterministic compartmental model and used the Nelder-Mead Simplex Direct Search Algorithm and chi-square values to estimate the model parameters. we calculate ℛ0 = 3.6429 when the number of beds in the Fangcang shelter hospital is relatively tight in the second stage and ℛ0 = 0.4974 in the fifth stage when there are enough beds in both Fangcang shelter hospital and designated hospital. Then we perform a sensitivity analysis on ℛ0 by using perturbation of fixed point estimation of model parameters in the fifth stage, and obtain three parameters that are more sensitive to ℛ0, which are transmission rate (ß 1d ), proportion of the infectious (η) and the hospitalization rate of asymptomatic infected cases (δ 1). Through simulation, we obtain that if the hospitalization rate of asymptomatic infections δ 2 > 0.9373 or the transmission rate ß 1b  < 0.0467, the second stage of Omicron transmission in Shanghai can be well controlled. Finally, we find the measure that converting the National Convention and Exhibition Center (NECC) into a Fangcang shelter hospital has played an important role in curbing the epidemic. Whether this temporary Fangcang shelter hospital is not built or delayed, the cumulative number of confirmed cases will both exceed 100,000, and the cumulative asymptomatic infections will both exceed 1 million. In addition, for a city of 10 million people, we obtain that if a permanent Fangcang shelter hospital with 17,784 beds is built ahead of epidemic, there will be no shortage of beds during the outbreak of Omicron. Our findings enrich the content of the impact of Fangcang shelter hospital beds on the spread of Omicron and confirm the correct policy adopted by the Chinese government.

17.
Infect Dis Model ; 8(2): 562-573, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37305609

RESUMO

On December 7, 2022, the Chinese government optimized the current epidemic prevention and control policy, and no longer adopted the zero-COVID policy and mandatory quarantine measures. Based on the above policy changes, this paper establishes a compartment dynamics model considering age distribution, home isolation and vaccinations. Parameter estimation was performed using improved least squares and Nelder-Mead simplex algorithms combined with modified case data. Then, using the estimated parameter values to predict a second wave of the outbreak, the peak of severe cases will reach on 8 May 2023, the number of severe cases will reach 206,000. Next, it is proposed that with the extension of the effective time of antibodies obtained after infection, the peak of severe cases in the second wave of the epidemic will be delayed, and the final scale of the disease will be reduced. When the effectiveness of antibodies is 6 months, the severe cases of the second wave will peak on July 5, 2023, the number of severe cases is 194,000. Finally, the importance of vaccination rates is demonstrated, when the vaccination rate of susceptible people under 60 years old reaches 98%, and the vaccination rate of susceptible people over 60 years old reaches 96%, the peak of severe cases in the second wave of the epidemic will be reached on 13 July 2023, when the number of severe cases is 166,000.

18.
Heliyon ; 9(10): e20531, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37842629

RESUMO

Gonorrhea is a serious global health problem due to its high incidence, with approximately 82.4 million new cases in 2020. To evaluate the consequences of targeted dynamic control of gonorrhea infection transmission, a model for gonorrhea with optimal control analysis is proposed for a structured population. The study looked at the model's positively invariant and bounded regions. The gonorrhea secondary infection expression, R0 for the structured population is computed. The maximum principle of Pontryagin is utilised to construct the optimal system for the formulated mathematical model. To reduce the continuous propagation of gonorrhea, we incorporated education, condoms usage, vaccinations, and treatment as control strategies. The numerical simulations show that the number of infections decreases when the controls are implemented. The effectiveness of the controls is shown using the efficacy plots.

19.
One Health ; 17: 100615, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37638210

RESUMO

Rabies is an acute zoonotic infectious disease caused by rabies virus. In 2015, the World Health Organization proposed the goal of eliminating dog-induced human rabies by 2030. In response to this goal positively, China has been dedicated to the control and elimination of rabies mainly caused by dogs, for nearly 10 years. By applying infectious disease dynamics, in this paper, we establish a dog-human rabies transmission model to forecast future epidemic trends of rabies, assess whether the goal of eliminating dog-induced human rabies cases in China can be achieved in 2030, and further evaluate and suggest the follow-up sustained preventive measures after the elimination of human rabies. By analyzing and simulating above dynamic model, it is concluded that rabies has been well controlled in China in recent years, but dog-induced human rabies cannot be eliminated by 2030 according to current situation. In addition, we propose to improve rabies control efforts by increasing the immunization coverage rate of rural domestic dogs, controlling the number of stray dogs and preventing the import of rabies virus in wild animals. Immunization coverage rate of rural domestic dogs which is currently less than 10% is far from requirement, and it needs to reach 50%-60% to meet the goal of 2030. Since it is difficult to immunize stray dogs, we suggest to control the number of stray dogs below 15.27 million to achieve the goal. If the goal of eliminating human rabies is reached in 2030, the essential immunization coverage needs to be maintained for 18 years to reduce the number of canine rabies cases to zero. Lastly, to prevent transmission of rabies virus from wild animals to dogs, the thresholds of the number of dogs and the immunization coverage rate of dogs after eliminating canine rabies cases are also discussed.

20.
Bull Math Biol ; 74(5): 1226-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22383117

RESUMO

Human rabies, an infection of the nervous system, is a major public-health problem in China. In the last 60 years (1950-2010) there had been 124,255 reported human rabies cases, an average of 2,037 cases per year. However, the factors and mechanisms behind the persistence and prevalence of human rabies have not become well understood. The monthly data of human rabies cases reported by the Chinese Ministry of Health exhibits a periodic pattern on an annual base. The cases in the summer and autumn are significantly higher than in the spring and winter. Based on this observation, we propose a susceptible, exposed, infectious, and recovered (SEIRS) model with periodic transmission rates to investigate the seasonal rabies epidemics. We evaluate the basic reproduction number R (0), analyze the dynamical behavior of the model, and use the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health. We also carry out some sensitivity analysis of the basic reproduction number R (0) in terms of various model parameters. Moreover, we demonstrate that it is more reasonable to regard R (0) rather than the average basic reproduction number [Formula: see text] or the basic reproduction number [Formula: see text] of the corresponding autonomous system as a threshold for the disease. Finally, our studies show that human rabies in China can be controlled by reducing the birth rate of dogs, increasing the immunization rate of dogs, enhancing public education and awareness about rabies, and strengthening supervision of pupils and children in the summer and autumn.


Assuntos
Modelos Biológicos , Raiva/epidemiologia , Estações do Ano , Animais , Número Básico de Reprodução , China/epidemiologia , Cães , Epidemias/prevenção & controle , Epidemias/estatística & dados numéricos , Humanos , Prevalência , Raiva/prevenção & controle , Raiva/transmissão , Vacina Antirrábica/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA