Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Microdevices ; 24(4): 41, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399220

RESUMO

Lung cancer is the leading cause of cancer death in the United States. It has the lowest 5-year survival rate among the most common cancers and therefore, early diagnosis is critical to improve the survival rate. In this paper, a new handheld electronic device is proposed to detect nine lung cancer biomarkers in the exhaled breath. An electrochemical gas sensor was produced through deposition of a thin layer of graphene and Prussian blue on a chromium-modified silicon substrate. Selective binding of the analyte was formed by molecular imprinting polymer (MIP). Subsequent polymerization and removal of the analyte yielded a layer of a conductive polymer on top of the sensor containing molecularly imprinted cavities selective for the target molecule. The sensors were tested over 1-20 parts per trillion (ppt) level of concentration while the sensor resistance has been monitored as the sensors react to the analyte by resistance change. Pentane sensor was also tested for selectivity. A printed circuit board was designed to measure the resistance of each sensor and send the data to a developed application in smartphone through Bluetooth. This handheld device has the potential to be used as a diagnostic method in the near future.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , Humanos , Polímeros/química , Neoplasias Pulmonares/diagnóstico , Pulmão , Eletrônica
2.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164282

RESUMO

Since the revival of multiferroic laminates with giant magnetoelectric (ME) coefficients, a variety of multifunctional ME devices, such as sensor, inductor, filter, antenna etc. have been developed. Magnetoelastic materials, which couple the magnetization and strain together, have recently attracted ever-increasing attention due to their key roles in ME applications. This review starts with a brief introduction to the early research efforts in the field of multiferroic materials and moves to the recent work on magnetoelectric coupling and their applications based on both bulk and thin-film materials. This is followed by sections summarizing historical works and solving the challenges specific to the fabrication and characterization of magnetoelastic materials with large magnetostriction constants. After presenting the magnetostrictive thin films and their static and dynamic properties, we review micro-electromechanical systems (MEMS) and bulk devices utilizing ME effect. Finally, some open questions and future application directions where the community could head for magnetoelastic materials will be discussed.

3.
J Phys Condens Matter ; 32(25): 255401, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050167

RESUMO

Ge/Sb atomic intermixing in interfacial cationic layers is a common phenomenon for GeTe-Sb2Te3 superlattice (GST-SL) used in memory devices. In this paper, we explored the effect of Ge/Sb intermixing on the phase change behavior of GST-SL upon the heating-quenching procedure. Four interfacial intermixing models of Kooi, Ferro, Petrov and inverted Petrov with different Ge/Sb intermixing ratios (25/75, 50/50 and 75/25) were developed based on the ab initio molecular dynamics. The structural evolution indicated that the Ge/Sb interfacial intermixing could facilitate the structure changes especially for 50/50 Ge/Sb intermixed models. When quenching from 1500 K, more 4-fold Ge-centered octahedrons were produced than tetrahedrons, and the electron localization function further proved that the distorted of Ge(Sb)-centered 6-fold octahedrons were caused by the asymmetrical interactions of Ge-Ge/Sb and Ge-Te. A relatively large Te p  orbital contribution in coexisted Ge/Te layer led to a narrower bandgap. In addition, different Ge/Sb atom intermixed ratio which affected the electronic local structure, led to the discrepancy in the initial atom movement of Sb or Ge movement near the gap. The present studies enrich the understanding of Ge/Sb interfacial atomic intermixing effects in GST-SL structural changes.

4.
Alzheimers Dement (Amst) ; 12(1): e12088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088894

RESUMO

INTRODUCTION: Novel sensors were developed to detect exhaled volatile organic compounds to aid in the diagnosis of mild cognitive impairment associated with early stage Alzheimer's disease (AD). The sensors were sensitive to a rat model that combined the human apolipoprotein E (APOE)4 gene with aging and the Western diet. METHODS: Gas sensors fabricated from molecularly imprinted polymer-graphene were engineered to react with alkanes and small fatty acids associated with lipid peroxidation. With a detection sensitivity in parts per trillion the sensors were tested against the breath of wild-type and APOE4 male rats. Resting state BOLD functional connectivity was used to assess hippocampal function. RESULTS: Only APOE4 rats, and not wild-type controls, tested positive to several small hydrocarbons and presented with reduced functional coupling in hippocampal circuitry. DISCUSSION: These results are proof-of-concept toward the development of sensors that can be used as breath detectors in the diagnosis, prognosis, and treatment of presymptomatic AD.

5.
Materials (Basel) ; 12(14)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337062

RESUMO

The strong strain-mediated magnetoelectric (ME) coupling found in thin-film ME heterostructures has attracted an ever-increasing interest and enables realization of a great number of integrated multiferroic devices, such as magnetometers, mechanical antennas, RF tunable inductors and filters. This paper first reviews the thin-film characterization techniques for both piezoelectric and magnetostrictive thin films, which are crucial in determining the strength of the ME coupling. After that, the most recent progress on various integrated multiferroic devices based on thin-film ME heterostructures are presented. In particular, rapid development of thin-film ME magnetometers has been seen over the past few years. These ultra-sensitive magnetometers exhibit extremely low limit of detection (sub-pT/Hz1/2) for low-frequency AC magnetic fields, making them potential candidates for applications of medical diagnostics. Other devices reviewed in this paper include acoustically actuated nanomechanical ME antennas with miniaturized size by 1-2 orders compared to the conventional antenna; integrated RF tunable inductors with a wide operation frequency range; integrated RF tunable bandpass filter with dual H- and E-field tunability. All these integrated multiferroic devices are compact, lightweight, power-efficient, and potentially integrable with current complementary metal oxide semiconductor (CMOS) technology, showing great promise for applications in future biomedical, wireless communication, and reconfigurable electronic systems.

6.
Adv Mater ; 28(42): 9370-9377, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593972

RESUMO

A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 µm that is formed by ferrite magnetic inks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA