Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(17): e2106172, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35319815

RESUMO

Diabetic wound treatment faces significant challenges in clinical settings. Alternative treatment approaches are needed. Continuous bleeding, disordered inflammatory regulation, obstruction of cell proliferation, and disturbance of tissue remodeling are the main characteristics of diabetic wound healing. Hydrogels made of either naturally derived or synthetic materials can potentially be designed with a variety of functions for managing the healing process of chronic wounds. Here, a hemostatic and anti-inflammatory hydrogel patch is designed for promoting diabetic wound healing. The hydrogel patch is derived from dual-cross-linked methacryloyl-substituted Bletilla Striata polysaccharide (B) and gelatin (G) via ultraviolet (UV) light. It is demonstrated that the B-G hydrogel can effectively regulate the M1/M2 phenotype of macrophages, significantly promote the proliferation and migration of fibroblasts in vitro, and accelerate angiogenesis. It can boost wound closure by normalizing epidermal tissue regeneration and depositing collagen appropriately in vivo without exogenous cytokine supplementation. Overall, the B-G bioactive hydrogel can promote diabetic wound healing in a simple, economical, effective, and safe manner.


Assuntos
Diabetes Mellitus , Hidrogéis , Colágeno , Gelatina , Humanos , Cicatrização
2.
Small ; 18(21): e2107714, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35487761

RESUMO

Silk fibroin (SF) is a promising biomaterial for tendon repair, but its relatively rigid mechanical properties and low cell affinity have limited its application in regenerative medicine. Meanwhile, gelatin-based polymers have advantages in cell attachment and tissue remodeling but have insufficient mechanical strength to regenerate tough tissue such as tendons. Taking these aspects into account, in this study, gelatin methacryloyl (GelMA) is combined with SF to create a mechanically strong and bioactive nanofibrous scaffold (SG). The mechanical properties of SG nanofibers can be flexibly modulated by varying the ratio of SF and GelMA. Compared to SF nanofibers, mesenchymal stem cells (MSCs) seeded on SG fibers with optimal composition (SG7) exhibit enhanced growth, proliferation, vascular endothelial growth factor production, and tenogenic gene expression behavior. Conditioned media from MSCs cultured on SG7 scaffolds can greatly promote the migration and proliferation of tenocytes. Histological analysis and tenogenesis-related immunofluorescence staining indicate SG7 scaffolds demonstrate enhanced in vivo tendon tissue regeneration compared to other groups. Therefore, rational combinations of SF and GelMA hybrid nanofibers may help to improve therapeutic outcomes and address the challenges of tissue-engineered scaffolds for tendon regeneration.


Assuntos
Fibroínas , Células-Tronco Mesenquimais , Nanofibras , Proliferação de Células , Gelatina , Células-Tronco Mesenquimais/metabolismo , Metacrilatos , Seda , Tendões , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Small ; 17(45): e2100692, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310048

RESUMO

Viral infection is one of the leading causes of mortality worldwide. The growth of globalization significantly increases the risk of virus spreading, making it a global threat to future public health. In particular, the ongoing coronavirus disease 2019 (COVID-19) pandemic outbreak emphasizes the importance of devices and methods for rapid, sensitive, and cost-effective diagnosis of viral infections in the early stages by which their quick and global spread can be controlled. Micro and nanoscale technologies have attracted tremendous attention in recent years for a variety of medical and biological applications, especially in developing diagnostic platforms for rapid and accurate detection of viral diseases. This review addresses advances of microneedles, microchip-based integrated platforms, and nano- and microparticles for sampling, sample processing, enrichment, amplification, and detection of viral particles and antigens related to the diagnosis of viral diseases. Additionally, methods for the fabrication of microchip-based devices and commercially used devices are described. Finally, challenges and prospects on the development of micro and nanotechnologies for the early diagnosis of viral diseases are highlighted.


Assuntos
COVID-19 , Viroses , Humanos , Nanotecnologia , Pandemias , SARS-CoV-2 , Viroses/diagnóstico
4.
Small ; 17(7): e2004282, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502118

RESUMO

Cancer immunotherapies, including immune checkpoint inhibitor (ICI)-based therapies, have revolutionized cancer treatment. However, patient response to ICIs is highly variable, necessitating the development of methods to quickly assess efficacy. In this study, an array of miniaturized bioreactors has been developed to model tumor-immune interactions. This immunotherapeutic high-throughput observation chamber (iHOC) is designed to test the effect of anti-PD-1 antibodies on cancer spheroid (MDA-MB-231, PD-L1+) and T cell (Jurkat) interactions. This system facilitates facile monitoring of T cell inhibition and reactivation using metrics such as tumor infiltration and interleukin-2 (IL-2) secretion. Status of the tumor-immune interactions can be easily captured within the iHOC by measuring IL-2 concentration using a micropillar array where sensitive, quantitative detection is allowed after antibody coating on the surface of array. The iHOC is a platform that can be used to model and monitor cancer-immune interactions in response to immunotherapy in a high-throughput manner.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Imunoterapia , Dispositivos Lab-On-A-Chip , Neoplasias/tratamento farmacológico
5.
Adv Funct Mater ; 30(23)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33071712

RESUMO

Mesenchymal stem cells (MSCs) have been widely used for regenerative therapy. In most current clinical applications, MSCs are delivered by injection but face significant issues with cell viability and penetration into the target tissue due to a limited migration capacity. Some therapies have attempted to improve MSC stability by their encapsulation within biomaterials; however, these treatments still require an enormous number of cells to achieve therapeutic efficacy due to low efficiency. Additionally, while local injection allows for targeted delivery, injections with conventional syringes are highly invasive. Due to the challenges associated with stem cell delivery, a local and minimally invasive approach with high efficiency and improved cell viability is highly desired. In this study, we present a detachable hybrid microneedle depot (d-HMND) for cell delivery. Our system consists of an array of microneedles with an outer poly(lactic-co-glycolic) acid (PLGA) shell and an internal gelatin methacryloyl (GelMA)-MSC mixture (GMM). The GMM was characterized and optimized for cell viability and mechanical strength of the d-HMND required to penetrate mouse skin tissue was also determined. MSC viability and function within the d-HMND was characterized in vitro and the regenerative efficacy of the d-HMND was demonstrated in vivo using a mouse skin wound model.

6.
Adv Funct Mater ; 30(49)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34366759

RESUMO

Gelatin methacryloyl (GelMA) is a widely used hydrogel with skin-derived gelatin acting as the main constituent. However, GelMA has not been used in the development of wearable biosensors, which are emerging devices that enable personalized healthcare monitoring. This work highlights the potential of GelMA for wearable biosensing applications by demonstrating a fully solution-processable and transparent capacitive tactile sensor with microstructured GelMA as the core dielectric layer. A robust chemical bonding and a reliable encapsulation approach are introduced to overcome detachment and water-evaporation issues in hydrogel biosensors. The resultant GelMA tactile sensor shows a high-pressure sensitivity of 0.19 kPa-1 and one order of magnitude lower limit of detection (0.1 Pa) compared to previous hydrogel pressure sensors owing to its excellent mechanical and electrical properties (dielectric constant). Furthermore, it shows durability up to 3000 test cycles because of tough chemical bonding, and long-term stability of 3 days due to the inclusion of an encapsulation layer, which prevents water evaporation (80% water content). Successful monitoring of various human physiological and motion signals demonstrates the potential of these GelMA tactile sensors for wearable biosensing applications.

7.
Small ; 16(16): e1905910, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101371

RESUMO

The extraction of interstitial fluid (ISF) from skin using microneedles (MNs) has attracted growing interest in recent years due to its potential for minimally invasive diagnostics and biosensors. ISF collection by absorption into a hydrogel MN patch is a promising way that requires the materials to have outstanding swelling ability. Here, a gelatin methacryloyl (GelMA) patch is developed with an 11 × 11 array of MNs for minimally invasive sampling of ISF. The properties of the patch can be tuned by altering the concentration of the GelMA prepolymer and the crosslinking time; patches are created with swelling ratios between 293% and 423% and compressive moduli between 3.34 MPa and 7.23 MPa. The optimized GelMA MN patch demonstrates efficient extraction of ISF. Furthermore, it efficiently and quantitatively detects glucose and vancomycin in ISF in an in vivo study. This minimally invasive approach of extracting ISF with a GelMA MN patch has the potential to complement blood sampling for the monitoring of target molecules from patients.


Assuntos
Líquido Extracelular , Gelatina , Hidrogéis , Agulhas/classificação , Pele , Humanos
8.
Small ; 16(25): e2001837, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32419312

RESUMO

Stem cells secrete trophic factors that induce angiogenesis. These soluble factors are promising candidates for stem cell-based therapies, especially for cardiovascular diseases. Mechanical stimuli and biophysical factors presented in the stem cell microenvironment play important roles in guiding their behaviors. However, the complex interplay and precise role of these cues in directing pro-angiogenic signaling remain unclear. Here, a platform is designed using gelatin methacryloyl hydrogels with tunable rigidity and a dynamic mechanical compression bioreactor to evaluate the influence of matrix rigidity and mechanical stimuli on the secretion of pro-angiogenic factors from human mesenchymal stem cells (hMSCs). Cells cultured in matrices mimicking mechanical elasticity of bone tissues in vivo show elevated secretion of vascular endothelial growth factor (VEGF), one of representative signaling proteins promoting angiogenesis, as well as increased vascularization of human umbilical vein endothelial cells (HUVECs) with a supplement of conditioned media from hMSCs cultured across different conditions. When hMSCs are cultured in matrices stimulated with a range of cyclic compressions, increased VEGF secretion is observed with increasing mechanical strains, which is also in line with the enhanced tubulogenesis of HUVECs. Moreover, it is demonstrated that matrix stiffness and cyclic compression modulate secretion of pro-angiogenic molecules from hMSCs through yes-associated protein activity.


Assuntos
Células-Tronco Mesenquimais , Células Cultivadas , Sinais (Psicologia) , Meios de Cultivo Condicionados , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular
9.
Small ; 16(40): e2001647, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790000

RESUMO

Thrombosis is a life-threatening pathological condition in which blood clots form in blood vessels, obstructing or interfering with blood flow. Thrombolytic agents (TAs) are enzymes that can catalyze the conversion of plasminogen to plasmin to dissolve blood clots. The plasmin formed by TAs breaks down fibrin clots into soluble fibrin that finally dissolves thrombi. Several TAs have been developed to treat various thromboembolic diseases, such as pulmonary embolisms, acute myocardial infarction, deep vein thrombosis, and extensive coronary emboli. However, systemic TA administration can trigger non-specific activation that can increase the incidence of bleeding. Moreover, protein-based TAs are rapidly inactivated upon injection resulting in the need for large doses. To overcome these limitations, various types of nanocarriers have been introduced that enhance the pharmacokinetic effects by protecting the TA from the biological environment and targeting the release into coagulation. The nanocarriers show increasing half-life, reducing side effects, and improving overall TA efficacy. In this work, the recent advances in various types of TAs and nanocarriers are thoroughly reviewed. Various types of nanocarriers, including lipid-based, polymer-based, and metal-based nanoparticles are described, for the targeted delivery of TAs. This work also provides insights into issues related to the future of TA development and successful clinical translation.


Assuntos
Infarto do Miocárdio , Trombose , Coagulação Sanguínea , Preparações de Ação Retardada/uso terapêutico , Fibrinolíticos/uso terapêutico , Humanos , Trombose/tratamento farmacológico
10.
Nat Chem Biol ; 14(1): 86-93, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29083418

RESUMO

Generating artificial pancreatic beta cells by using synthetic materials to mimic glucose-responsive insulin secretion in a robust manner holds promise for improving clinical outcomes in people with diabetes. Here, we describe the construction of artificial beta cells (AßCs) with a multicompartmental 'vesicles-in-vesicle' superstructure equipped with a glucose-metabolism system and membrane-fusion machinery. Through a sequential cascade of glucose uptake, enzymatic oxidation and proton efflux, the AßCs can effectively distinguish between high and normal glucose levels. Under hyperglycemic conditions, high glucose uptake and oxidation generate a low pH (<5.6), which then induces steric deshielding of peptides tethered to the insulin-loaded inner small liposomal vesicles. The peptides on the small vesicles then form coiled coils with the complementary peptides anchored on the inner surfaces of large vesicles, thus bringing the membranes of the inner and outer vesicles together and triggering their fusion and insulin 'exocytosis'.


Assuntos
Células Artificiais , Materiais Biomiméticos/química , Engenharia Celular/métodos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fusão de Membrana , Animais , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Concentração de Íons de Hidrogênio , Insulina/sangue , Secreção de Insulina , Masculino , Camundongos Endogâmicos C57BL
11.
J Biol Chem ; 293(44): 17306-17307, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389791

RESUMO

The CRISPR-Cas9 system has developed into a powerful platform for genome editing in various types of cells and tissues with single-nucleotide precision, but limited delivery options hamper its application in real-world settings. A new study by Shen et al. describes the use of an amphipathic peptide to deliver Cas9/sgRNA ribonucleoprotein complexes, leading to the disruption of GFP genes in cells and mice. Disruption of the Nrip1 gene in isolated pre-adipocytes led to a "browning" phenotype, pointing to new options in the fight against diabetes and obesity.


Assuntos
Adipócitos/metabolismo , Sistemas CRISPR-Cas , Técnicas de Transferência de Genes , Peptídeos/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Camundongos , Proteína 1 de Interação com Receptor Nuclear/genética , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Peptídeos/metabolismo
12.
Small ; 15(15): e1900300, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30884183

RESUMO

Cells secrete substances that are essential to the understanding of numerous immunological phenomena and are extensively used in clinical diagnoses. Countless techniques for screening of biomarker secretion in living cells have generated valuable information on cell function and physiology, but low volume and real-time analysis is a bottleneck for a range of approaches. Here, a simple, highly sensitive assay using a high-throughput micropillar and microwell array chip (MIMIC) platform is presented for monitoring of biomarkers secreted by cancer cells. The sensing element is a micropillar array that uses the enzyme-linked immunosorbent assay (ELISA) mechanism to detect captured biomolecules. When integrated with a microwell array where few cells are localized, interleukin 8 (IL-8) secretion can be monitored with nanoliter volume using multiple micropillar arrays. The trend of cell secretions measured using MIMICs matches the results from conventional ELISA well while it requires orders of magnitude less cells and volumes. Moreover, the proposed MIMIC is examined to be used as a drug screening platform by delivering drugs using micropillar arrays in combination with a microfluidic system and then detecting biomolecules from cells as exposed to drugs.


Assuntos
Biomarcadores/análise , Ensaios de Triagem em Larga Escala/métodos , Microtecnologia/métodos , Animais , Anticorpos/análise , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos
13.
Proc Natl Acad Sci U S A ; 112(27): 8260-5, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100900

RESUMO

A glucose-responsive "closed-loop" insulin delivery system mimicking the function of pancreatic cells has tremendous potential to improve quality of life and health in diabetics. Here, we report a novel glucose-responsive insulin delivery device using a painless microneedle-array patch ("smart insulin patch") containing glucose-responsive vesicles (GRVs; with an average diameter of 118 nm), which are loaded with insulin and glucose oxidase (GOx) enzyme. The GRVs are self-assembled from hypoxia-sensitive hyaluronic acid (HS-HA) conjugated with 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazoles through bioreduction under hypoxic conditions. The local hypoxic microenvironment caused by the enzymatic oxidation of glucose in the hyperglycemic state promotes the reduction of HS-HA, which rapidly triggers the dissociation of vesicles and subsequent release of insulin. The smart insulin patch effectively regulated the blood glucose in a mouse model of chemically induced type 1 diabetes. The described work is the first demonstration, to our knowledge, of a synthetic glucose-responsive device using a hypoxia trigger for regulation of insulin release. The faster responsiveness of this approach holds promise in avoiding hyperglycemia and hypoglycemia if translated for human therapy.


Assuntos
Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Insulina/administração & dosagem , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 1/sangue , Sistemas de Liberação de Medicamentos/instrumentação , Glucose/metabolismo , Glucose Oxidase/metabolismo , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Hipóxia/metabolismo , Insulina/química , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Oxirredução , Reprodutibilidade dos Testes
14.
Small ; 13(19)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28318091

RESUMO

Hypoglycemia, the state of abnormally low blood glucose level, is an acute complication of insulin and sulfonylurea therapy in diabetes management. Frequent insulin dosing and boluses during daily diabetes care leads to an increased risk of dangerously low glucose levels, which can cause behavioral and cognitive disturbance, seizure, coma, and even death. This study reports an insulin-responsive glucagon delivery method based on a microneedle (MN)-array patch for the prevention of hypoglycemia. The controlled release of glucagon is achieved in response to elevated insulin concentration by taking advantage of the specific interaction between insulin aptamer and target insulin. Integrating a painless MN-array patch, it is demonstrated that this insulin-triggered glucagon delivery device is able to prevent hypoglycemia following a high-dose insulin injection in a chemically induced type 1 diabetic mouse model.


Assuntos
Insulina/uso terapêutico , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Humanos , Hipoglicemia/metabolismo , Camundongos
15.
Biomacromolecules ; 18(12): 4341-4348, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29141405

RESUMO

In this study, a type of novel thermosensitive polypeptide-based hydrogel with tunable gelation behavior through changing the content of carboxyl groups was developed for the purpose of improving the cisplatin (CDDP) release behavior and enhancing the localized antitumor efficiency. The introduction of carboxyl groups in methoxy-poly(ethylene glycol)-b-(poly(γ-ethyl-l-glutamate-co-l-glutamic acid) (mPEG-b-P(ELG-co-LG)) not only led to adjustable mechanical properties of the hydrogel but also significantly reduced the burst release of the drug through the complexation between the carboxyl groups of polypeptide and CDDP. Furthermore, both the good biocompatibility and the biodegradable properties of mPEG-b-P(ELG-co-LG) hydrogel were observed in vivo. Interestingly, the CDDP-complexed mPEG-b-P(ELG-co-LG) hydrogel exhibited significantly enhanced antitumor efficacy in vivo compared to the mPEG-b-PELG hydrogel loaded with CDDP without complexation, although a lower cytotoxicity and IC50 of the CDDP-complexed hydrogel was observed in vitro. Overall, the new type of injectable CDDP-complexed hydrogel may serve as an efficient platform for sustained CDDP delivery in localized tumor therapy.


Assuntos
Antineoplásicos/química , Cisplatino/química , Ácido Glutâmico/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Peptídeos/química , Polietilenoglicóis/química , Animais , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Plásticos Biodegradáveis/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Portadores de Fármacos/química , Feminino , Células HeLa , Humanos , Injeções/métodos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley
16.
Nano Lett ; 16(2): 1118-26, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26785163

RESUMO

Protein therapy has been considered the most direct and safe approach to treat cancer. Targeting delivery of extracellularly active protein without internalization barriers, such as membrane permeation and endosome escape, is efficient and holds vast promise for anticancer treatment. Herein, we describe a "transformable" core-shell based nanocarrier (designated CS-NG), which can enzymatically assemble into microsized extracellular depots at the tumor site with assistance of hyaluronidase (HAase), an overexpressed enzyme at the tumor microenvironment. Equipped with an acid-degradable modality, the resulting CS-NG can substantially release combinational anticancer drugs-tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) and antiangiogenic cilengitide toward the membrane of cancer cells and endothelial cells at the acidic tumor microenvironment, respectively. Enhanced cytotoxicity on MDA-MB-231 cells and improved antitumor efficacy were observed using CS-NG, which was attributed to the inhibition of cellular internalization and prolonged retention time in vivo.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Venenos de Serpentes/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Humanos , Hialuronoglucosaminidase/biossíntese , Hialuronoglucosaminidase/química , Camundongos , Venenos de Serpentes/química , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Angew Chem Int Ed Engl ; 56(10): 2588-2593, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28140504

RESUMO

Anaerobic bacteria, such as Clostridium and Salmonella, can selectively invade and colonize in tumor hypoxic regions (THRs) and deliver therapeutic products to destroy cancer cells. Herein, we present an anaerobe nanovesicle mimic that can not only be activated in THRs but also induce hypoxia in tumors by themselves. Moreover, inspired by the oxygen metabolism of anaerobes, we construct a light-induced hypoxia-responsive modality to promote dissociation of vehicles and activation of bioreductive prodrugs simultaneously. In vitro and in vivo experiments indicate that this anaerobe-inspired nanovesicle can efficiently induce apoptotic cell death and significantly inhibit tumor growth. Our work provides a new strategy for engineering stimuli-responsive drug delivery systems in a bioinspired and synergistic fashion.


Assuntos
Antineoplásicos/farmacologia , Clostridium/química , Hipóxia/metabolismo , Nanopartículas/química , Pró-Fármacos/farmacologia , Salmonella/química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clostridium/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Imidazóis/farmacologia , Pró-Fármacos/química , Salmonella/metabolismo , Tirapazamina/química , Tirapazamina/farmacologia
18.
Angew Chem Int Ed Engl ; 54(41): 12029-33, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26310292

RESUMO

CRISPR-Cas9 represents a promising platform for genome editing, yet means for its safe and efficient delivery remain to be fully realized. A novel vehicle that simultaneously delivers the Cas9 protein and single guide RNA (sgRNA) is based on DNA nanoclews, yarn-like DNA nanoparticles that are synthesized by rolling circle amplification. The biologically inspired vehicles were efficiently loaded with Cas9/sgRNA complexes and delivered the complexes to the nuclei of human cells, thus enabling targeted gene disruption while maintaining cell viability. Editing was most efficient when the DNA nanoclew sequence and the sgRNA guide sequence were partially complementary, offering a design rule for enhancing delivery. Overall, this strategy provides a versatile method that could be adapted for delivering other DNA-binding proteins or functional nucleic acids.


Assuntos
Proteínas Associadas a CRISPR/administração & dosagem , Sistemas CRISPR-Cas , DNA/administração & dosagem , Nanopartículas/química , RNA Guia de Cinetoplastídeos/administração & dosagem , Animais , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/química , DNA/genética , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos Nus , Neoplasias/genética , Neoplasias/terapia , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , Streptococcus pyogenes/química , Streptococcus pyogenes/genética
19.
J Am Chem Soc ; 136(42): 14722-5, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25336272

RESUMO

A bioinspired cocoon-like anticancer drug delivery system consisting of a deoxyribonuclease (DNase)-degradable DNA nanoclew (NCl) embedded with an acid-responsive DNase I nanocapsule (NCa) was developed for targeted cancer treatment. The NCl was assembled from a long-chain single-stranded DNA synthesized by rolling-circle amplification (RCA). Multiple GC-pair sequences were integrated into the NCl for enhanced loading capacity of the anticancer drug doxorubicin (DOX). Meanwhile, negatively charged DNase I was encapsulated in a positively charged acid-degradable polymeric nanogel to facilitate decoration of DNase I into the NCl by electrostatic interactions. In an acidic environment, the activity of DNase I was activated through the acid-triggered shedding of the polymeric shell of the NCa, resulting in the cocoon-like self-degradation of the NCl and promoting the release of DOX for enhanced therapeutic efficacy.


Assuntos
Antineoplásicos/química , DNA/química , DNA/metabolismo , Doxorrubicina/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Nanopartículas/química , Antineoplásicos/farmacologia , Desoxirribonucleases/metabolismo , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Células MCF-7 , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA