Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Acta Pharmacol Sin ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902501

RESUMO

The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1ß that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.

2.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770344

RESUMO

T helper 17 (Th17)-cell differentiation triggered by interleukin-6 (IL-6) via STAT3 activation promotes inflammation in inflammatory bowel disease (IBD) patients. However, leukemia inhibitory factor (LIF), an IL-6 family cytokine, restricts inflammation by blocking Th17-cell differentiation via an unknown mechanism. Here, we report that microbiota dysregulation promotes LIF secretion by intestinal epithelial cells (IECs) in a mouse colitis model. LIF greatly activates STAT4 phosphorylation on multiple SPXX elements within the C-terminal transcription regulation domain. STAT4 and STAT3 act reciprocally on both canonical cis-inducible elements (SIEs) and noncanonical "AGG" elements at different loci. In lamina propria lymphocytes (LPLs), STAT4 activation by LIF blocks STAT3-dependent Il17a/Il17f promoter activation, whereas in IECs, LIF bypasses the extraordinarily low level of STAT4 to induce YAP gene expression via STAT3 activation. In addition, we found that the administration of LIF is sufficient to restore microbiome homeostasis. Thus, LIF effectively inhibits Th17 accumulation and promotes repair of damaged intestinal epithelium in inflamed colon, serves as a potential therapy for IBD.


Assuntos
Colite/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT4/fisiologia , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-17/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fator de Transcrição STAT3/genética , Transdução de Sinais , Células Th17/imunologia
3.
Macromol Rapid Commun ; 44(7): e2200803, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36519731

RESUMO

Metallic Li is considered the most promising anode material for high-energy-density batteries owing to its high theoretical capacity and low electrochemical potential. However, inhomogeneous lithium deposition and uncontrollable growth of lithium dendrites result in low lithium utilization, rapid capacity fading, and poor cycling performance. Herein, two sulfonated covalent organic frameworks (COFs) with different sulfonated group contents are synthesized as the multifunctional interlayers in lithium metal batteries. The sulfonic acid groups in the pore channels can serve as Li-anchoring sites that effectively coordinate Li ions. These periodically arranged subunits significantly guide uniform Li-ion flux distribution, guarantee smooth Li deposition, and reduce lithium dendrite formation. Consequently, these characteristics afford an excellent quasi-solid-state electrolyte with a high ionic conductivity of 1.9 × 10-3  S  cm-1 at room temperature and a superior Li++ transference number of 0.91. A Li/LiFePO4 battery with the COF-based electrolyte exhibited dendrite-free Li deposition during the charge process, accompanied by no capacity decay after 100 cycles at 0.1 C.


Assuntos
Lítio , Estruturas Metalorgânicas , Metais , Íons , Alcanossulfonatos , Eletrodos
4.
Phys Chem Chem Phys ; 25(14): 10129-10135, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36974883

RESUMO

Water freezing is a crucial physical phenomenon. The process of ice formation, and the estimation of the ice nucleation rate also have important applications. However, until now, the experimental phenomenon of rapid freezing of water in nanoseconds has not been fully explained theoretically, and the physics underlying the experimental phenomenon has still not been revealed. In this work, combining classical nucleation theory with Mie theory, a kinetic model is developed that reproduces for the first time the experimental phenomenon of decreasing transmissivity. The process of ice formation (nucleation, growth and engulfment) has been revealed. In the process of theoretical derivation, the Zel'dovich-Frenkel (ZF) equation is developed, indicating a limit to the phase transition driving force |Δµ|/(kBT) ≤ 1. By analyzing the experimental and simulation results, it is suggested that the change in the transparency of the sample may be caused by the ice/vacuum interface scattering. In addition, during the rapid phase transition, it was found that the phase transition continues to occur even after phase fraction normalization. Finally, the approximate formula between the nucleation rate and sample transparency is given. This formula can predict the change of sample transparency during phase transition and provides a way to measure the nucleation rate. The results presented here give an insight into the phase transition kinetics, and the methodology may also work for the phase transitions of other materials.

5.
Acta Pharmacol Sin ; 44(4): 780-790, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36038765

RESUMO

Increasing evidence shows that smoking-obtained nicotine is indicated to improve cognition and mitigate certain symptoms of schizophrenia. In this study, we investigated whether chronic nicotine treatment alleviated MK-801-induced schizophrenia-like symptoms and cognitive impairment in mice. Mice were injected with MK-801 (0.2 mg/kg, i.p.), and the behavioral deficits were assessed using prepulse inhibition (PPI) and T-maze tests. We showed that MK-801 caused cognitive impairment accompanied by increased expression of PDZ and LIM domain 5 (Pdlim5), an adaptor protein that is critically associated with schizophrenia, in the prefrontal cortex (PFC). Pretreatment with nicotine (0.2 mg · kg-1 · d-1, s.c., for 2 weeks) significantly ameliorated MK-801-induced schizophrenia-like symptoms and cognitive impairment by reversing the increased Pdlim5 expression levels in the PFC. In addition, pretreatment with nicotine prevented the MK-801-induced decrease in CREB-regulated transcription coactivator 1 (CRTC1), a coactivator of CREB that plays an important role in cognition. Furthermore, MK-801 neither induced schizophrenia-like behaviors nor decreased CRTC1 levels in the PFC of Pdlim5-/- mice. Overexpression of Pdlim5 in the PFC through intra-PFC infusion of an adreno-associated virus AAV-Pdlim5 induced significant schizophrenia-like symptoms and cognitive impairment. In conclusion, chronic nicotine treatment alleviates schizophrenia-induced memory deficits in mice by regulating Pdlim5 and CRTC1 expression in the PFC.


Assuntos
Disfunção Cognitiva , Maleato de Dizocilpina , Camundongos , Animais , Maleato de Dizocilpina/metabolismo , Maleato de Dizocilpina/farmacologia , Nicotina/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Córtex Pré-Frontal/metabolismo , Cognição , Fatores de Transcrição/metabolismo
6.
Dev Neurosci ; 44(6): 487-497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35537406

RESUMO

Astrocytes are the most common glial type in the central nervous system. They play pivotal roles in neurophysiological and neuropathological processes. Mounting evidence indicates that astrocytes may act as neural stem cells and contribute to adult neurogenesis. In previous reports, freshly isolated O-2A progenitors were shown to revert to neural stem-like cells (NSLCs) when cultured with a serum-containing glial medium or bone morphogenic proteins for 3 days and with basic fibroblast growth factor consecutively. NSLCs possess self-renewal and multipotential capacities that can give rise to neurons and glial cells, which suggests that they have stem cell-like properties. However, the underlying molecular mechanisms and cell fate commitment when exposed to a neural conditioned medium remain obscure. In this study, we demonstrated that NSLCs grown in the serum-containing neurobasal medium can differentiate into induced neural-like cells (iNLCs). It was noteworthy that astroglia mixed in these cells, particularly in iNLCs, were gradually replaced by neural phenotypes during this glia-neuron conversion. Remarkably, these glial cells can maintain high levels of proliferation and self-renewal ability by activating the NF-κB and MAPK signals. Finally, we found that Notch, STAT3, autophagy, bHLH, and Wnt signals appear to be critical modulators of these intricate events. Altogether, these data demonstrate that O-2A lineage astroglia can function as neural stem cells and display neurogenic plasticity. Dissecting the regulatory pathways involved in these processes is essential to the understanding of glial cell fate and its precise functions. This finding may foster a better understanding of astrocytic heterogeneity and lead to innovative ways to readily apply stem-like astroglia cells as candidate cell sources for neural repair.


Assuntos
Astrócitos , Células-Tronco Neurais , Oligodendroglia/metabolismo , Neuroglia , Diferenciação Celular , Linhagem da Célula
7.
Cell Mol Neurobiol ; 42(7): 2407-2422, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34196879

RESUMO

The only food and drug administration (FDA)-approved drug currently available for the treatment of acute ischemic stroke is tissue plasminogen activator (tPA), yet the therapeutic benefits of this drug are partially outweighed by the increased risk of hemorrhagic transformation (HT). Analysis of the NIH trial has shown that cigarette smoking protected tPA-treated patients from HT; however, the underlying mechanism is not clear. Nicotinic acetylcholine receptors (nAChR) has shown anti-inflammatory effect and modulation nAChR could be a strategy to reduce ischemia/reperfusion-induced blood-brain barrier (BBB) damage. Since melatonin could regulate the expression of α7nAchR and melatonin's neuroprotective effect against ischemic injury is mediated via α7nAChR modulation, here, we aim to test the hypothesis that melatonin reduces ischemia and reperfusion (I/R)-induced BBB damage through modulation of α7nACh receptor (α7nAChR). Mice were subjected to 1.5 h ischemia and 24 h reperfusion and at the onset of reperfusion, mice received intraperitoneal administration (i.p.) of either drug or saline. Mice were randomly assigned into five groups: Saline; α7nAChR agonist PNU282987; Melatonin; Melatonin+Methyllycaconitine (MLA, α7nAChR antagonist), and MLA group. BBB permeability was assessed by detecting the extravasation of Evan's blue and IgG. Our results showed that I/R significantly increased BBB permeability accompanied by occludin degradation, microglia activation, and high mobility group box 1 (HMGB1) release from the neuron. In addition, I/R significantly induced neuronal loss accompanied by the decrease of CREB-regulated transcriptional coactivator 1 (CRTC1) and p-CREB expression. Melatonin treatment significantly inhibited the above changes through modulating α7nAChR. Taken together, these results demonstrate that melatonin provides a protective effect on ischemia/reperfusion-induced BBB damage, at least in part, depending on the modulation of α7nAChR.


Assuntos
Proteína HMGB1 , AVC Isquêmico , Melatonina , Receptores Nicotínicos , Animais , Camundongos , Receptor Nicotínico de Acetilcolina alfa7 , Barreira Hematoencefálica , Isquemia , Microglia , Reperfusão , Ativador de Plasminogênio Tecidual , Fatores de Transcrição
8.
Mol Cell Biochem ; 476(2): 619-631, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33070275

RESUMO

Parkinson's disease (PD) is a disorder characterized by a progressive loss of the dopaminergic neurons in the substantia nigra and a depletion of the neurotransmitter dopamine in the striatum. Our published results indicate that fasciculation and elongation protein zeta-1 (FEZ1) plays a role in the astrocyte-mediated protection of dopamine neurons and regulation of the neuronal microenvironment during the progression of PD. In this study, we examined the effects of engrafted type-2 astrocytes (T2As) with high expression of FEZ1 on the improvement of the symptoms and functional reconstruction of PD rats. T2As were stereotactically transplanted into the striatum of rats with PD induced by 6-hydroxydopamine (6-OHDA). An examination of apomorphine (APO)-induced rotations was performed to evaluate dopamine neuron damage and motor functions. Remarkably, the grafted cells survived in the lesion environment for six weeks or longer after implantation. In addition, the transplantation of T2As decrease the average velocity and the duration time of the APO-induced rotations, and increase the actuation time, as measured in the rotation behavioural tests. In the substantia nigra, the transplantation of T2As reduced the PD-induced GFAP, TH and FEZ1 downregulation. The grafted cells exclusively migrated to other regions near the injection site in the striatum and differentiated into GFAP+ astrocytes or TH+ neurons. Furthermore, by detecting monoamine neurotransmitters through high-performance liquid chromatography, we found that the nigrostriatal pathway had been repaired to some extent. Taken together, these results suggest that engrafted T2As with high expression of FEZ1 improved the symptoms and functional reconstruction of PD rats, providing a theoretical basis for FEZ1 as a potential target and engraftment of T2As as a therapeutic strategy in the treatment of PD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apomorfina/farmacologia , Astrócitos/transplante , Neurônios Dopaminérgicos/efeitos dos fármacos , Doença de Parkinson/terapia , Substância Negra/metabolismo , Adrenérgicos/administração & dosagem , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina/administração & dosagem , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley
9.
Neural Plast ; 2021: 9928232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434231

RESUMO

We recently showed that inhibition of hypoxia-induced factor-1α (HIF-1α) decreased acute ischemic stroke-induced blood-brain barrier (BBB) damage. However, factors that induce the upregulation of HIF-1α expression remain unclear. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase played a critical role in reperfusion-induced BBB damage after stroke. However, the role of NADPH oxidase in BBB injury during the acute ischemia stage remains unclear. This study is aimed at investigating the role of NADPH oxidase in BBB injury and the expression of HIF-1α after acute ischemic stroke. A sutured middle cerebral artery occlusion (MCAO) model was used to mimic ischemic stroke in rats. Our results show that the inhibition of NADPH oxidase by apocynin can significantly reduce the BBB damage caused by 2 h ischemic stroke accompanied by reducing the degradation of tight junction protein occludin. In addition, treatment with apocynin significantly decreased the upregulation of HIF-1α induced by 2 h MCAO. More importantly, apocynin could also inhibit the MMP-2 upregulation. Of note, HIF-1α was not colocalized with a bigger blood vessel. Taken together, our results showed that inhibition of NADPH oxidase-mediated HIF-1α upregulation reduced BBB damage accompanied by downregulating MMP-2 expression and occludin degradation after 2 h ischemia stroke. These results explored the mechanism of BBB damage after acute ischemic stroke and may help reduce the associated cerebral hemorrhage transformation after thrombolysis and endovascular treatment after ischemic stroke.


Assuntos
Barreira Hematoencefálica/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , AVC Isquêmico/metabolismo , NADPH Oxidases/antagonistas & inibidores , Acetofenonas/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Ocludina/metabolismo , Ratos , Ratos Sprague-Dawley
10.
J Cell Mol Med ; 24(16): 9255-9266, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627929

RESUMO

Blood-brain barrier (BBB) integrity injury within the thrombolytic time window is becoming a critical target to reduce haemorrhage transformation (HT). We have previously reported that BBB damage was initially damaged in non-infarcted striatum after acute ischaemia stroke. However, the underlying mechanism is not clear. Since acute ischaemic stroke could induce a significant increase of dopamine release in striatum, in current study, our aim is to investigate the role of dopamine receptor signal pathway in BBB integrity injury after acute ischaemia using rat middle cerebral artery occlusion model. Our data showed that 2-h ischaemia induced a significant increase of endogenous tissue plasminogen activator (tPA) in BBB injury area and intra-striatum infusion of tPA inhibitor neuroserpin, significantly alleviated 2-h ischaemia-induced BBB injury. In addition, intra-striatum infusion of D1 receptor antagonist SCH23390 significantly decreased ischaemia-induced upregulation of endogenous tPA, accompanied by decrease of BBB injury and occludin degradation. More important, inhibition of hypoxia-inducible factor-1 alpha with inhibitor YC-1 significantly decreased 2-h ischaemia-induced endogenous tPA upregulation and BBB injury. Taken together, our data demonstrate that acute ischaemia disrupted BBB through activation of endogenous tPA via HIF-1α upregulation, thus representing a new therapeutic target for protecting BBB after acute ischaemic stroke.


Assuntos
Barreira Hematoencefálica/lesões , Isquemia Encefálica/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , AVC Isquêmico/fisiopatologia , Receptores de Dopamina D1/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Doença Aguda , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/genética , Regulação para Cima
11.
Int J Neuropsychopharmacol ; 23(10): 687-699, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32516360

RESUMO

BACKGROUND: Fear memory is a fundamental capability for animals and humans to survive. Its impairment results in the disability to avoid danger. When memory is reactivated, a reconsolidation process, which can be disrupted by various stimuli, including inflammation, is required to become permanent. Nicotine has been shown to improve cognitive deficits induced by inflammation and other stimuli. Therefore, in the present study, we investigated the effect of nicotine on lipopolysaccharide (LPS)-induced impairment of fear memory reconsolidation and the underlying mechanism. METHODS: Step-through inhibitory avoidance task was recruited to study fear memory of rat, i.p. LPS (0.5 mg/kg) treatment was used to induce inflammation, and western blot and immunostaining were applied to detect protein expression and distribution in medial prefrontal cortex and hippocampus. RESULTS: Our data showed that LPS induced fear memory reconsolidation impairment without affecting retrieval. In addition, LPS significantly increased inflammation factors tumor necrosis factor-α and interleukin-1 beta and decreased CREB-regulated transcription coactivator 1 (CRTC1) expression and adenosine monophosphate-activated protein kinase (AMPK) activation in hippocampus. More importantly, LPS significantly decreased CRTC1 expression and AMPK activation in neurons by activating microglia cells. Of note, either nicotine treatment or activation of AMPK by intracerebroventricular infusion of metformin reduced LPS-induced impairment of fear memory reconsolidation and ameliorated inflammation factor tumor necrosis factor-α and interleukin-1 beta as well as the expression of CRTC1. CONCLUSIONS: In conclusion, our results showed that acute nicotine treatment alleviates LPS-induced impairment of fear memory reconsolidation through activation of AMPK and upregulation of CRTC1 in hippocampus.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Consolidação da Memória/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Proteínas Quinases/efeitos dos fármacos , Fatores de Transcrição/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Disfunção Cognitiva/induzido quimicamente , Medo/fisiologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/administração & dosagem , Masculino , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Regulação para Cima
12.
Cell Mol Neurobiol ; 39(8): 1151-1163, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31270712

RESUMO

Ischemic stroke often causes motor and cognitive deficits. Deregulated glia gap junction communication, which is reflected by increased protein levels of glial fibrillary acidic protein (GFAP) and connexin 43 (Cx43), has been observed in ischemic hippocampus and has been associated with cognitive impairment in animal stroke models. Here, we tested the hypothesis that reactive astrocytes-mediated loss of synaptophysin (SYP) and CREB-regulated transcription coactivator 1 (CRTC1) contribute to dysfunction in glia gap junction communication and memory impairment after ischemic stroke. Male Sprague-Dawley rats were subjected to a 90-min middle cerebral artery occlusion (MCAO) with 7-day reperfusion. Fluorocitrate (1 nmol), the reversible inhibitor of the astrocytic tricarboxylic acid cycle, was injected into the right lateral ventricle of MCAO rats once every 2 days starting immediately before reperfusion. The Morris water maze was used to assess memory in conjunction with western blotting and immunostaining to detect protein expression and distribution in the hippocampus. Our results showed that ischemic stroke caused significant memory impairment accompanied by increased protein levels of GFAP and Cx43 in hippocampal tissue. In addition, the levels of several key memory-related important proteins including SYP, CRTC1, myelin basic protein and high-mobility group-box-1 were significantly reduced in the hippocampal tissue. Of note, inhibition of reactive astrocytes with fluorocitrate was shown to significantly reverse the above noted changes induced by ischemic stroke. Taken together, our findings demonstrate that inhibiting reactive astrocytes with fluorocitrate immediately before reperfusion may protect against ischemic stroke-induced memory impairment through the upregulation of CRTC1 and SYP.


Assuntos
Astrócitos/metabolismo , Citratos/farmacologia , Aprendizagem/efeitos dos fármacos , Transtornos da Memória/fisiopatologia , Acidente Vascular Cerebral/metabolismo , Sinaptofisina/metabolismo , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Conexina 43/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína HMGB1/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Proteína Básica da Mielina/metabolismo , Ratos Sprague-Dawley , Acidente Vascular Cerebral/fisiopatologia , Fatores de Transcrição/metabolismo
13.
EMBO Rep ; 18(12): 2131-2143, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28982940

RESUMO

The histone H3 N-terminal protein domain (N-tail) is regulated by multiple posttranslational modifications, including methylation, acetylation, phosphorylation, and by proteolytic cleavage. However, the mechanism underlying H3 N-tail proteolytic cleavage is largely elusive. Here, we report that JMJD5, a Jumonji C (JmjC) domain-containing protein, is a Cathepsin L-type protease that mediates histone H3 N-tail proteolytic cleavage under stress conditions that cause a DNA damage response. JMJD5 clips the H3 N-tail at the carboxyl side of monomethyl-lysine (Kme1) residues. In vitro H3 peptide digestion reveals that JMJD5 exclusively cleaves Kme1 H3 peptides, while little or no cleavage effect of JMJD5 on dimethyl-lysine (Kme2), trimethyl-lysine (Kme3), or unmethyl-lysine (Kme0) H3 peptides is observed. Although H3 Kme1 peptides of K4, K9, K27, and K36 can all be cleaved by JMJD5 in vitro, K9 of H3 is the major cleavage site in vivo, and H3.3 is the major H3 target of JMJD5 cleavage. Cleavage is enhanced at gene promoters bound and repressed by JMJD5 suggesting a role for H3 N-tail cleavage in gene expression regulation.


Assuntos
Dano ao DNA , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Clivagem do RNA/genética , Células A549 , Acetilação , Regulação da Expressão Gênica , Histonas/genética , Humanos , Metilação , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Proteólise
14.
J Neurochem ; 132(6): 724-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25683686

RESUMO

Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 µg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 µg/mL tPA, but not 5 µg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation.


Assuntos
Encéfalo/metabolismo , Caveolina 1/biossíntese , Células Endoteliais/metabolismo , Metaloproteinase 9 da Matriz/biossíntese , Microvasos/metabolismo , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Camundongos , Microvasos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
15.
J Neurochem ; 135(2): 357-67, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26263395

RESUMO

The hippocampus receives dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences hippocampus-dependent behaviors. Enhancements in working memory performance have been previously reported following acute smoking/nicotine exposure. However, the underlying mechanism remains unclear. This study investigated the effects of nicotine on spatial working memory (SWM) and the mechanisms involved. Delayed alternation T-maze task was used to assess SWM. In situ and gel gelatin zymography were used to detect matrix metalloproteinase-9 (MMP-9) in SWM. Systemic or local (intra-VTA) administration of nicotine significantly improves SWM, which was accompanied by increased MMP-9 activity in dorsal hippocampus (dHPC). Intra-dHPC administration of MMP inhibitor FN-439 abolished the memory enhancement induced by intra-VTA nicotine infusion. FN-439 had no effect on locomotor behavior. Our data suggest that intra-VTA nicotine infusion activates MMP-9 in dHPC to improve SWM in rats.


Assuntos
Hipocampo/enzimologia , Metaloproteinases da Matriz/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Memória Espacial/efeitos dos fármacos , Área Tegmentar Ventral , Animais , Ativação Enzimática/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Microinjeções , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Oligopeptídeos/farmacologia , Ratos , Ratos Sprague-Dawley
16.
CNS Neurosci Ther ; 30(2): e14627, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353058

RESUMO

BACKGROUND: Systemic inflammation in which lipopolysaccharide (LPS) is released into circulation can cause cognitive dysfunction and we have previously shown that LPS impaired working memory (WM) which refers to the ability to guide incoming behavior by retrieving recently acquired information. However, the mechanism is not very clear, and currently, there is no approved strategy to improve inflammation-induced WM deficit. Notably, epidemiological studies have demonstrated a lower occurrence rate of inflammatory-related diseases in smoking patients, suggesting that inflammation-induced WM impairment may be improved by nicotine treatment. Here, our object is to investigate the effect and potential mechanisms of acute and chronic nicotine treatment on LPS-produced WM deficiency. METHODS: Delayed alternation T-maze task (DAT) was applied for evaluating WM which includes both the short-term information storage and the ability to correct errors in adult male mice. Immunofluorescence staining and immunoblotting were used for assessing the levels and distribution of CREB-regulated transcription coactivator 1 (CRTC1) and hyperpolarization-activated cation channels 2 (HCN2) in the medial prefrontal cortex (mPFC) and hippocampus. Quantitative PCR and ELISA were employed for analyzing the mRNA and protein levels of TNF-α and IL-1ß. RESULTS: Our results revealed that administration of LPS (i.p.) at a dose of 0.5 mg/kg significantly produced WM impairment in the DAT task accompanied by an increase in IL-1ß and TNF-α expression in the mPFC. Moreover, intra-mPFC infusion of IL-1Ra, an IL-1 antagonist, markedly alleviated LPS-induced WM deficiency. More important, chronic (2 weeks) but not acute nicotine (0.2 mg/kg, subcutaneous) treatment significantly alleviated LPS-induced WM deficiency by upregulating CRTC1 and HCN2. Of note, intra-mPFC infusion of HCN blocker ZD7288 produced significant WM deficiency. CONCLUSIONS: In summary, in this study, we show that chronic nicotine treatment ameliorates acute inflammation-induced working memory deficiency by increasing CRTC1 and HCN2 in adult male mice.


Assuntos
Memória de Curto Prazo , Nicotina , Humanos , Camundongos , Masculino , Animais , Memória de Curto Prazo/fisiologia , Nicotina/farmacologia , Nicotina/uso terapêutico , Nicotina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/toxicidade , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Fatores de Transcrição/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Canais de Potássio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo
17.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143050

RESUMO

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Assuntos
Mitocôndrias , Mitofagia , Neurônios , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neurônios/metabolismo , Mitocôndrias/metabolismo , Camundongos , Humanos , Fosforilação Oxidativa , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Neurogênese
18.
J Cereb Blood Flow Metab ; 43(7): 1042-1059, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37086081

RESUMO

Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.


Assuntos
Barreira Hematoencefálica , Disfunção Cognitiva , Humanos , Barreira Hematoencefálica/metabolismo , Envelhecimento/metabolismo , Disfunção Cognitiva/patologia , Inflamação/patologia , Cognição , Fatores de Transcrição/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-36736944

RESUMO

Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Tabagismo , Gravidez , Feminino , Humanos , Adolescente , Nicotina/efeitos adversos , Fumar/psicologia , Cognição , Transtornos da Memória
20.
Front Psychiatry ; 14: 1186073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409161

RESUMO

Background: Social interaction is a fundamental human need. Social isolation (SI) can have negative effects on both emotional and cognitive function. However, it is currently unclear how age and the duration of SI affect emotion and recognition function. In addition, there is no specific treatment for the effects of SI. Methods: The adolescence or adult mice were individually housed in cages for 1, 6 or 12 months and for 2 months to estabolish SI mouse model. We investigated the effects of SI on behavior in mice at different ages and under distinct durations of SI, and we explored the possible underlying mechanisms. Then we performed deep brain stimulation (DBS) to evaluate its influences on SI induced behavioral abnormalities. Results: We found that social recognition was affected in the short term, while social preference was damaged by extremely long periods of SI. In addition to affecting social memory, SI also affects emotion, short-term spatial ability and learning willingness in mice. Myelin was decreased significantly in the medial prefrontal cortex (mPFC) and dorsal hippocampus of socially isolated mice. Cellular activity in response to social stimulation in both areas was impaired by social isolation. By stimulating the mPFC using DBS, we found that DBS alleviated cellular activation disorders in the mPFC after long-term SI and improved social preference in mice. Conclusion: Our results suggest that the therapeutic potential of stimulating the mPFC with DBS in individuals with social preference deficits caused by long-term social isolation, as well as the effects of DBS on the cellular activity and density of OPCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA