Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(9): e202300001, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821718

RESUMO

Chemically labile ester linkages can be introduced into lignin by incorporation of monolignol conjugates, which are synthesized in planta by acyltransferases that use a coenzyme A (CoA) thioester donor and a nucleophilic monolignol alcohol acceptor. The presence of these esters facilitates processing and aids in the valorization of renewable biomass feedstocks. However, the effectiveness of this strategy is potentially limited by the low steady-state levels of aromatic acid thioester donors in plants. As part of an effort to overcome this, aromatic acid CoA ligases involved in microbial aromatic degradation were identified and screened against a broad panel of substituted cinnamic and benzoic acids involved in plant lignification. Functional fingerprinting of this ligase library identified four robust, highly active enzymes capable of facile, rapid, and high-yield synthesis of aromatic acid CoA thioesters under mild aqueous reaction conditions mimicking in planta activity.


Assuntos
Coenzima A Ligases , Ligases , Coenzima A Ligases/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Ésteres
2.
Physiol Plant ; 175(5): e14006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882274

RESUMO

Copper (Cu) homeostasis is integral to many plant physiological processes, including lignification of plant cell walls. This link occurs through Cu's role as a cofactor in the apoplastic laccase enzymes that oxidize monolignols that then polymerize to form the hydrophobic lignin polymer, which provides rigidity and strength to the water transport system. In this study, we investigated the effect of Cu deficiency on lignin content and chemistry in poplar stems. We also examined the effect of Cu deficiency on the stiffness of stem wood and the hydraulic properties of leaves. Cu deficiency resulted in a significant reduction in lignin content, an increase in the syringyl to guaiacyl monomer ratio of stem xylem, and no change to stem modulus of elasticity. Accompanying these stem traits, Cu-deficient leaves had higher (less negative) turgor loss points and markedly stiffer mesophyll cell walls. Our results may reflect a novel response in poplar whereby structural stiffness and mechanical stability are maintained in the face of Cu deficiency and reduction in the guaiacyl lignin monomer content.


Assuntos
Cobre , Lignina , Cobre/análise , Xilema , Madeira , Folhas de Planta , Parede Celular/química
3.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36077589

RESUMO

Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules, which transmit environmental signals in plant cells through stepwise phosphorylation and play indispensable roles in a wide range of physiological and biochemical processes. Here, we isolated and characterized a gene encoding MKK2 protein from poplar through the rapid amplification of cDNA ends (RACE). The full-length PeMKK2a gene was 1571 bp, including a 1068 bp open reading frame (ORF) encoding 355 amino acids, and the putative PeMKK2a protein belongs to the PKc_like (protein kinase domain) family (70-336 amino acids) in the PKc_MAPKK_plant subfamily and contains 62 sites of possible phosphorylation and two conserved domains, DLK and S/T-xxxxx-S/T. Detailed information about its gene structure, sequence similarities, subcellular localization, and transcript profiles under salt-stress conditions was revealed. Transgenic poplar lines overexpressing PeMKK2a exhibited higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) than non-transgenic poplar under salt stress conditions. These results will provide insight into the roles of MAPK signaling cascades in poplar response to salt stress.


Assuntos
Populus , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética
4.
BMC Plant Biol ; 19(1): 185, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060504

RESUMO

BACKGROUND: Passiflora edulis, known as passion fruit and native to South America, is now widely cultivated throughout southern China for its edible value, medicinal efficacy and ornamental properties. We have developed a cold-tolerant variety of P. edulis ('Pingtang 1') that can survive subzero temperatures and is highly adaptable in Karst areas. In this study, cuttings of 'Pingtang 1' were cultivated in a limestone (L) rocky desertification area and a sandy dolomite (D) rock desertification area. Changes in nutrient elements in both the soils and plants were revealed in the two plots. Moreover, RNA sequencing (RNA-Seq) was performed to profile the root transcriptomes for further exploration of nutrient adaptative mechanism of Passiflora edulis in Karst regions. RESULTS: In this study, a total of, 244,705,162 clean reads were generated from four cDNA libraries and assembled into 84,198 unigenes, of which 56,962 were annotated by publicly available databases. Transcriptome profiles were generated, and 1314 unigenes (531 upregulated and 801 downregulated) were significantly differentially expressed between the L and D root cDNA libraries (L_R and D_R, respectively); these profiles provide a global overview of the gene expression patterns associated with P. edulis adaptability to Karst soils. Most unigenes including a number of differentially expressed genes (DEGs) were involved in nutrient element uptake, utilization, signal regulation. And DEGs enriched in KEGG pathways of plant hormone signal transduction, phenylpropanoid biosynthesis, and biosynthesis of unsaturated fatty acids were significantly expressed. CONCLUSION: These results could contribute to better understanding the adaptation of this species to environmental stress and thus enhance the potential for successfully introducing and commercially deploying P. edulis.


Assuntos
Adaptação Fisiológica , Ecossistema , Nitrogênio/análise , Passiflora/genética , Passiflora/fisiologia , Fósforo/análise , Transcriptoma , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA