RESUMO
BACKGROUND: Pod shell thickness (PST) is an important agronomic trait of peanut because it affects the ability of shells to resist pest infestations and pathogen attacks, while also influencing the peanut shelling process. However, very few studies have explored the genetic basis of PST. RESULTS: An F2 segregating population derived from a cross between the thick-shelled cultivar Yueyou 18 (YY18) and the thin-shelled cultivar Weihua 8 (WH8) was used to identify the quantitative trait loci (QTLs) for PST. On the basis of a bulked segregant analysis sequencing (BSA-seq), four QTLs were preliminarily mapped to chromosomes 3, 8, 13, and 18. Using the genome resequencing data of YY18 and WH8, 22 kompetitive allele-specific PCR (KASP) markers were designed for the genotyping of the F2 population. Two major QTLs (qPSTA08 and qPSTA18) were identified and finely mapped, with qPSTA08 detected on chromosome 8 (0.69-Mb physical genomic region) and qPSTA18 detected on chromosome 18 (0.15-Mb physical genomic region). Moreover, qPSTA08 and qPSTA18 explained 31.1-32.3% and 16.7-16.8% of the phenotypic variation, respectively. Fifteen genes were detected in the two candidate regions, including three genes with nonsynonymous mutations in the exon region. Two molecular markers (Tif2_A08_31713024 and Tif2_A18_7198124) that were developed for the two major QTL regions effectively distinguished between thick-shelled and thin-shelled materials. Subsequently, the two markers were validated in four F2:3 lines selected. CONCLUSIONS: The QTLs identified and molecular markers developed in this study may lay the foundation for breeding cultivars with a shell thickness suitable for mechanized peanut shelling.
Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Mapeamento Cromossômico , Melhoramento Vegetal , FenótipoRESUMO
Aqueous electrolytes with a low voltage window (1.23 V) and prone side reactions, such as hydrogen evolution reaction and cathode dissolution, compromise the advantages of high safety and low cost of aqueous metal-ion batteries. Herein, introducing catechol (CAT) into the aqueous electrolyte, an outer sphere electron transfer mechanism is initiated to inhibit the water reactivity, achieving an electrochemical window of 3.24 V. In a typical Zn-ion battery, the outer sphere electrons jump from CAT to Zn2+-H2O at a geometrically favorable situation and between the solvation molecules without breaking or forming chemical bonds as that of the inner sphere electron transfers. The excited state π-π stacking further leads to the outer sphere electron transfer occurring at the electrolyte/electrode interface. This high-voltage electrolyte allows achieving an operating voltage two times higher than that of the usual aqueous electrolytes and provides almost the highest energy density and power density for the V2O5-based aqueous Zn-ion full batteries. The Zn//Zn symmetric battery delivers a 4000 h lifespan, and the Zn//V2O5 full battery achieves a â¼380 W h kg-1 energy density and a 92% capacity retention after 3000 cycles at 1 A g-1 and a 2.4 V output voltage. This outer sphere electron transfer strategy paves the way for designing high-voltage aqueous electrolytes.
RESUMO
BACKGROUND: This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS: The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS: Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.
Assuntos
Arachis , Estudo de Associação Genômica Ampla , Arachis/genética , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS: Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS: This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.
Assuntos
Arachis , Ralstonia solanacearum , Arachis/genética , Arachis/microbiologia , Transcriptoma , Ralstonia solanacearum/fisiologia , Melhoramento Vegetal , Resistência à Doença/genética , Glutationa/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
The portfolio of extraordinary fire retardancy, mechanical properties, dielectric/electric insulating performances, and thermal conductivity (λ) is essential for the practical applications of epoxy resin (EP) in high-end industries. To date, it remains a great challenge to achieve such a performanceportfolio in EP due to their different and even mutually exclusive governing mechanisms. Herein, a multifunctional additive (G@SiO2@FeHP) is fabricated by in situ immobilization of silica (SiO2) and iron phenylphosphinate (FeHP) onto the graphene (G) surface. Benefiting from the synergistic effect of G, SiO2 and FeHP, the addition of 1.0 wt% G@SiO2@FeHP enables EP to achieve a vertical burning (UL-94) V-0 rating and a limiting oxygen index (LOI) of 30.5%. Besides, both heat release and smoke generation of as-prepared EP nanocomposite are significantly suppressed due to the condensed-phase function of G@SiO2@FeHP. Adding 1.0 wt% G@SiO2@FeHP also brings about 44.5%, 61.1%, and 42.3% enhancements in the tensile strength, tensile modulus, and impact strength of EP nanocomposite. Moreover, the EP nanocomposite exhibits well-preserved dielectric and electric insulating properties and significantly enhanced λ. This work provides an integrated strategy for the development of multifunctional EP materials, thus facilitating their high-performance applications.
RESUMO
SARS-CoV-2 breakthrough infections in vaccinated individuals underscore the threat posed by continuous mutating variants, such as Omicron, to vaccine-induced immunity. This necessitates the search for broad-spectrum immunogens capable of countering infections from such variants. This study evaluates the immunogenicity relationship among SARS-CoV-2 variants, from D614G to XBB, through Guinea pig vaccination, covering D614G, Alpha, Beta, Gamma, Delta, BA.1, BA.2, BA.2.75, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB, employing three immunization strategies: three-dose monovalent immunogens, three-dose bivalent immunogens, and a two-dose vaccination with D614G followed by a booster immunization with a variant strain immunogen. Three distinct immunogenicity clusters were identified: D614G, Alpha, Beta, Gamma, and Delta as cluster 1, BA.1, BA.2, and BA.2.75 as cluster 2, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB as cluster 3. Broad-spectrum protection could be achieved through a combined immunization strategy using bivalent immunogens or D614G and XBB, or two initial D614G vaccinations followed by two XBB boosters. A comparison of neutralizing antibody levels induced by XBB boosting and equivalent dosing of D614G and XBB revealed that the XBB booster produced higher antibody levels. The study suggests that vaccine antigen selection should focus on the antigenic alterations among variants, eliminating the need for updating vaccine components for each variant.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Cobaias , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Análise por Conglomerados , Vacinas Combinadas , Anticorpos AntiviraisRESUMO
KEY MESSAGE: Stable QTL for pod and kernel traits were co-localized on chromosome Arahy05, and an INDEL marker at 106,411,957 on Arahy05 was developed and validated to be useful for marker-assisted selection of kernel weight. Pod and kernel traits, such as hundred pod weight (HPW), and hundred kernel weight (HKW), along with pod and kernel sizes, are pivotal determinants of yield in peanut breeding programs. This study sought to identify quantitative trait loci (QTL) that are associated with these pod and kernel traits in peanuts. To achieve this, a recombinant inbred line (RIL) population, was derived from a cross between Yuhua15, a cultivar known for its high yield, and a germplasm accession W1202. The investigation uncovered stable and major QTL that are significantly associated with both pod and kernel weight and were consistently co-localized on chromosomes Arahy05 and Arahy08. Furthermore, an INDEL marker was identified and characterized in the QTL interval on Arahy05. An extensive re-sequencing analysis comprising 395 germplasm accessions led to the discovery of two principal haplotypes within a 500-kb window flanking the aforementioned INDEL marker. The haplotypes exhibited a significant correlation with the HKW in our diverse panel of germplasm accessions. Notably, the 170 accessions harboring the haplotype associated with an increased HKW primarily represented botanical varieties, specifically Arachis hypogaea var. hypogaea and A. hypogaea var. hirsuta. On the other hand, the 137 accessions associated with the alternative haplotype, which corresponded to a reduced HKW, were predominately identified as belonging to botanical varieties within A. hypogaea subsp. fastigiata. The INDEL marker located on Arahy05, which demonstrates close linkage to the pod and kernel traits, would be an efficient approach for marker-assisted selection (MAS) of pod and kernel weight in breeding programs.
Assuntos
Arachis , Mapeamento Cromossômico , Cromossomos de Plantas , Mutação INDEL , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes , Arachis/genética , Arachis/crescimento & desenvolvimento , Marcadores Genéticos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Haplótipos , Ligação GenéticaRESUMO
In this paper, a series of tetrameric surfactants (4CnSAZs, n = 12, 14, 16) endowed with zwitterionic characteristic were synthesized by a simple and convenient method and their structures were characterized by FT-IR, 1H NMR and elemental analysis. Their physicochemical properties were studied using the Wilhelmy plate method, fluorescence spectra and dynamic light scattering technique. 4CnSAZs have higher surface activities and tend to adsorb at the air/water surface rather than self-assembling in aqueous solution. The thermodynamic parameters obtained from surface tension measurements show that both processes of adsorption and micellization of 4CnSAZs are spontaneous and that the micellization processes of 4CnSAZs are entropy-driven processes. Both adsorption and micellization of 4CnSAZs are inclined to occur with the increase of alkyl chain length or temperature. For 4C12SAZs, there are only small-size aggregates (micelles), while the large aggregates (vesicles) are observed at the alkyl length of 4CnSAZs of 14 or 16. This shows that the alkyl chain length for oligomeric surfactants has a greater sensitivity for aggregate growth. The aggregate morphologies obtained from the calculated values of critical packing parameter (p) for 4C14SAZs and 4C16SAZs can be supported by the DLS measurement results. The test results obtained by the separation-water-time method show that 4CnSAZs have good emulsification performance and that the prepared emulsions appear to exit in the form of multiple emulsions. In addition, 4CnSAZs have good antibacterial activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The present study reveals the unique behavior of a zwitterionic tetrameric surfactant and may give new insights into molecular design and synthesis of a high degree of surfactants with different structure characteristics for potential application in various industrial fields.
Assuntos
Antibacterianos , Tensoativos , Tensoativos/química , Tensoativos/farmacologia , Tensoativos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Tensão Superficial , Termodinâmica , Emulsões/química , Testes de Sensibilidade Microbiana , Micelas , Staphylococcus aureus/efeitos dos fármacos , Adsorção , Propriedades de Superfície , Escherichia coli/efeitos dos fármacosRESUMO
Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. Improving its yield is crucial for sustainable peanut production to meet increasing food and industrial requirements. Deciphering the genetic control underlying peanut kernel weight and size, which are essential components of peanut yield, would facilitate high-yield breeding. A high-density single nucleotide polymorphism (SNP)-based linkage map was constructed using a recombinant inbred lines (RIL) population derived from a cross between the variety Yuanza9102 and a germplasm accession wt09-0023. Kernel weight and size quantitative trait loci (QTLs) were co-localized to a 0.16 Mb interval on Arahy07 using inclusive composite interval mapping (ICIM). Analysis of SNP, and Insertion or Deletion (INDEL) markers in the QTL interval revealed a gene encoding a pentatricopeptide repeat (PPR) superfamily protein as a candidate closely linked with kernel weight and size in cultivated peanut. Examination of the PPR gene family indicated a high degree of collinearity of PPR genes between A. hypogaea and its diploid progenitors, Arachis duranensis and Arachis ipaensis. The candidate PPR gene, Arahy.JX1V6X, displayed a constitutive expression pattern in developing seeds. These findings lay a foundation for further fine mapping of QTLs related to kernel weight and size, as well as validation of candidate genes in cultivated peanut.
Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Melhoramento Vegetal , Mapeamento Cromossômico , CitoplasmaRESUMO
BACKGROUND: Peanut is an important oil crop worldwide. Peanut web blotch is a fungal disease that often occurs at the same time as other leaf spot diseases, resulting in substantial leaf drop, which seriously affects the peanut yield and quality. However, the molecular mechanism underlying peanut resistance to web blotch is unknown. RESULTS: The cytological examination revealed no differences in the conidium germination rate between the web blotch-resistant variety ZH and the web blotch-susceptible variety PI at 12-48 hpi. The appressorium formation rate was significantly higher for PI than for ZH at 24 hpi. The papilla formation rate at 36 hpi and the hypersensitive response rate at 60 and 84 hpi were significantly higher for ZH than for PI. We also compared the transcriptional profiles of web blotch-infected ZH and PI plants at 0, 12, 24, 36, 48, 60, and 84 hpi using an RNA-seq technique. There were more differentially expressed genes (DEGs) in ZH and PI at 12, 36, 60, and 84 hpi than at 24 and 48 hpi. Moreover, there were more DEGs in PI than in ZH at each time-point. The analysis of metabolic pathways indicated that pantothenate and CoA biosynthesis; monobactam biosynthesis; cutin, suberine and wax biosynthesis; and ether lipid metabolism are specific to the active defense of ZH against YY187, whereas porphyrin metabolism as well as taurine and hypotaurine metabolism are pathways specifically involved in the passive defense of ZH against YY187. In the protein-protein interaction (PPI) network, most of the interacting proteins were serine acetyltransferases and cysteine synthases, which are involved in the cysteine synthesis pathway. The qRT-PCR data confirmed the reliability of the transcriptome analysis. CONCLUSION: On the basis of the PPI network for the significantly enriched genes in the pathways which were specifically enriched at different time points in ZH, we hypothesize that serine acetyltransferases and cysteine synthases are crucial for the cysteine-related resistance of peanut to web blotch. The study results provide reference material for future research on the mechanism mediating peanut web blotch resistance.
Assuntos
Arachis , Transcriptoma , Arachis/genética , Arachis/microbiologia , Cisteína/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Acetiltransferases/genética , Serina/genéticaRESUMO
KEY MESSAGE: QTLs for growth habit are identified on Arahy.15 and Arahy.06 in peanut, and diagnostic markers are developed and validated for further use in marker-assisted breeding. Peanut is a unique legume crop because its pods develop and mature underground. The pegs derive from flowers following pollination, then reach the ground and develop into pods in the soil. Pod number per plant is influenced by peanut growth habit (GH) that has been categorized into four types, including erect, bunch, spreading and prostrate. Restricting pod development at the plant base, as would be the case for peanut plants with upright lateral branches, would decrease pod yield. On the other hand, GH characterized by spreading lateral branches on the ground would facilitate pod formation on the nodes, thereby increasing yield potential. We describe herein an investigation into the GH traits of 521 peanut recombinant inbred lines grown in three distinct environments. Quantitative trait loci (QTLs) for GH were identified on linkage group (LG) 15 between 203.1 and 204.2 cM and on LG 16 from 139.1 to 139.3 cM. Analysis of resequencing data in the identified QTL regions revealed that single nucleotide polymorphism (SNP) or insertion and/or deletion (INDEL) at Arahy15.156854742, Arahy15.156931574, Arahy15.156976352 and Arahy06.111973258 may affect the functions of their respective candidate genes, Arahy.QV02Z8, Arahy.509QUQ, Arahy.ATH5WE and Arahy.SC7TJM. These SNPs and INDELs in relation to peanut GH were further developed for KASP genotyping and tested on a panel of 77 peanut accessions with distinct GH features. This study validates four diagnostic markers that may be used to distinguish erect/bunch peanuts from spreading/prostrate peanuts, thereby facilitating marker-assisted selection for GH traits in peanut breeding.
Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Mapeamento Cromossômico , Melhoramento Vegetal , FenótipoRESUMO
Population and genotype data are essential for genetic mapping. The multi-parent advanced generation intercross (MAGIC) population is a permanent mapping population used for precisely mapping quantitative trait loci. Moreover, genotyping-by-target sequencing (GBTS) is a robust high-throughput genotyping technology characterized by its low cost, flexibility, and limited requirements for information management and support. In this study, an 8-way MAGIC population was constructed using eight elite founder lines. In addition, GenoBaits Peanut 40K was developed and utilized for the constructed MAGIC population. A subset (297 lines) of the MAGIC population at the S2 stage was genotyped using GenoBaits Peanut 40K. Furthermore, these lines and the eight parents were analyzed in terms of pod length, width, area, and perimeter. A total of 27 single nucleotide polymorphisms (SNPs) were revealed to be significantly associated with peanut pod size-related traits according to a genome-wide association study. The GenoBaits Peanut 40K provided herein and the constructed MAGIC population will be applicable for future research to identify the key genes responsible for important peanut traits. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01417-w.
RESUMO
Current protein or glucose based biomemristors have low resistance-switching performance and require complex structural designs, significantly hindering the development of implantable memristor devices. It is imperative to discover novel candidate materials for biomemristor with high durability and excellent biosafety for implantable health monitoring. Herein, we initially demonstrate the resistance switching characteristics of a nonvolatile memristor in a configuration of Pt/AlOOH/ITO consisting of biocompatible AlOOH nanosheets sandwiched between a Indium Tin Oxides (ITO) electrode and a platinum (Pt) counter-electrode. The hydrothermally synthesized AlOOH nanosheets have excellent biocompatibility as confirmed through the Cell Counting Kit-8 (CCK-8) tests. Four discrete resistance levels are achieved in this assembled device in responsible to different compliance currents (ICC) for the set process, where the emerging multilevel states show high durability over 103 cycles, outperforming the protein-based biomemristors under similar conditions. The excellent performance of the Pt/AlOOH/ITO memristor is attributed to the significant role of hydrogen proton with pipe effect, as confirmed by both experimental results and density functional theory (DFT) analyses. The present results indicate the nonvolatile memristors with great potential as the next generation implantable multilevel resistive memories for long-term human health monitoring.
Assuntos
Hidróxido de Alumínio , Produtos Biológicos , Humanos , Óxido de AlumínioRESUMO
The atom-cluster interaction has recently been exploited as an effective way to increase the performance of metal-nitrogen-carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure-property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)-N4 single atoms (SAs) could significantly improve the ORR performance of a well-screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu-N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O-O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu-N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half-wave potential of 0.92â eV in alkali and 0.80â eV in acid, as well as a high power density of 214.8â mW cm-2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly-metallic centers for electrocatalysis.
RESUMO
Ion transport behaviours through cell membranes are commonly identified in biological systems, which are crucial for sustaining life for organisms. Similarly, ion transport is significant for electrochemical ion storage in rechargeable batteries, which has attracted much attention in recent years. Rapid ion transport can be well achieved by crystal channels engineering, such as creating pores or tailoring interlayer spacing down to the nanometre or even sub-nanometre scale. Furthermore, some functional channels, such as ion selective channels and stimulus-responsive channels, are developed for smart ion storage applications. In this review, the typical ion transport phenomena in the biological systems, including ion channels and pumps, are first introduced, and then ion transport mechanisms in solid and liquid crystals are comprehensively reviewed, particularly for the widely studied porous inorganic/organic hybrid crystals and ultrathin inorganic materials. Subsequently, recent progress on the ion transport properties in electrodes and electrolytes is reviewed for rechargeable batteries. Finally, current challenges in the ion transport behaviours in rechargeable batteries are analysed and some potential research approaches, such as bioinspired ultrafast ion transport structures and membranes, are proposed for future studies. It is expected that this review can give a comprehensive understanding on the ion transport mechanisms within crystals and provide some novel design concepts on promoting electrochemical ion storage capability in rechargeable batteries.
Assuntos
Fontes de Energia Elétrica , Eletrólitos , Eletrodos , Eletrólitos/química , Eletrólitos/metabolismo , Canais Iônicos/química , Transporte de ÍonsRESUMO
KEY MESSAGE: A major QTL, qBWA12, was fine mapped to a 216.68 kb physical region, and A12.4097252 was identified as a useful KASP marker for breeding peanut varieties resistant to bacterial wilt. Bacterial wilt, caused by Ralstonia solanacearum, is a major disease detrimental to peanut production in China. Breeding disease-resistant peanut varieties is the most economical and effective way to prevent the disease and yield loss. Fine mapping the QTLs for bacterial wilt resistance is critical for the marker-assisted breeding of disease-resistant varieties. A recombinant inbred population comprising 521 lines was used to construct a high-density genetic linkage map and to identify QTLs for bacterial wilt resistance following restriction-site-associated DNA sequencing. The genetic map, which included 5120 SNP markers, covered a length of 3179 cM with an average marker distance of 0.6 cM. Four QTLs for bacterial wilt resistance were mapped on four chromosomes. One major QTL, qBWA12, with LOD score of 32.8-66.0 and PVE of 31.2-44.8%, was stably detected in all four development stages investigated over the 3 trial years. Additionally, qBWA12 spanned a 2.7 cM region, corresponding to approximately 0.4 Mb and was fine mapped to a 216.7 kb region by applying KASP markers that were polymorphic between the two parents based on whole-genome resequencing data. In a large collection of breeding and germplasm lines, it was proved that KASP marker A12.4097252 can be applied for the marker-assisted breeding to develop peanut varieties resistant to bacterial wilt. Of the 19 candidate genes in the region covered by qBWA12, nine NBS-LRR genes should be further investigated regarding their potential contribution to the resistance of peanut against bacterial wilt.
Assuntos
Arachis , Resistência à Doença , Arachis/genética , Arachis/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
To ensure reliability and facilitate the strain engineering of zinc oxide (ZnO) nanowires (NWs), it is significant to understand their flexibility thoroughly. In this study, single-crystalline ZnO NWs with rich axial pyramidal I (π1) and prismatic stacking faults (SFs) are synthesized by a metal oxidation method. Bending properties of the as-synthesized ZnO NWs are investigated at the atomic scale using an in situ high-resolution transmission electron microscopy (HRTEM) technique. It is revealed that the SF-rich structures can foster multiple inelastic deformation mechanisms near room temperature, including active axial SFs' migration, deformation twinning and detwinning process in the NWs with growth π1 SFs, and prevalent nucleation and slip of perfect dislocations with a continuous increased bending strain, leading to tremendous bending strains up to 20% of the NWs. Our results record ultralarge bending deformations and provide insights into the deformation mechanisms of single-crystalline ZnO NWs with rich axial SFs.
RESUMO
BACKGROUND: Chromosomal variants play important roles in crop breeding and genetic research. The development of single-stranded oligonucleotide (oligo) probes simplifies the process of fluorescence in situ hybridization (FISH) and facilitates chromosomal identification in many species. Genome sequencing provides rich resources for the development of oligo probes. However, little progress has been made in peanut due to the lack of efficient chromosomal markers. Until now, the identification of chromosomal variants in peanut has remained a challenge. RESULTS: A total of 114 new oligo probes were developed based on the genome-wide tandem repeats (TRs) identified from the reference sequences of the peanut variety Tifrunner (AABB, 2n = 4x = 40) and the diploid species Arachis ipaensis (BB, 2n = 2x = 20). These oligo probes were classified into 28 types based on their positions and overlapping signals in chromosomes. For each type, a representative oligo was selected and modified with green fluorescein 6-carboxyfluorescein (FAM) or red fluorescein 6-carboxytetramethylrhodamine (TAMRA). Two cocktails, Multiplex #3 and Multiplex #4, were developed by pooling the fluorophore conjugated probes. Multiplex #3 included FAM-modified oligo TIF-439, oligo TIF-185-1, oligo TIF-134-3 and oligo TIF-165. Multiplex #4 included TAMRA-modified oligo Ipa-1162, oligo Ipa-1137, oligo DP-1 and oligo DP-5. Each cocktail enabled the establishment of a genome map-based karyotype after sequential FISH/genomic in situ hybridization (GISH) and in silico mapping. Furthermore, we identified 14 chromosomal variants of the peanut induced by radiation exposure. A total of 28 representative probes were further chromosomally mapped onto the new karyotype. Among the probes, eight were mapped in the secondary constrictions, intercalary and terminal regions; four were B genome-specific; one was chromosome-specific; and the remaining 15 were extensively mapped in the pericentric regions of the chromosomes. CONCLUSIONS: The development of new oligo probes provides an effective set of tools which can be used to distinguish the various chromosomes of the peanut. Physical mapping by FISH reveals the genomic organization of repetitive oligos in peanut chromosomes. A genome map-based karyotype was established and used for the identification of chromosome variations in peanut following comparisons with their reference sequence positions.
Assuntos
Arachis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Genoma de Planta , Cariótipo , Sequências Repetitivas de Ácido Nucleico/genética , Variação Genética , Genótipo , Sondas de OligonucleotídeosRESUMO
2D metal (hydr)oxide nanosheets have captured increasing interest in electrocatalytic applications aroused by their high specific surface areas, enriched chemically active sites, tunable physiochemical properties, etc. In particular, the electrocatalytic reactivities of materials greatly rely on their surface electronic structures. Generally speaking, the electronic structures of catalysts can be well adjusted via controlling their morphologies, defects, and heterostructures. In this Review, the latest advances in 2D metal (hydr)oxide nanosheets are first reviewed, including the applications in electrocatalysis for the hydrogen evolution reaction, oxygen reduction reaction, and oxygen evolution reaction. Then, the electronic structure-property relationships of 2D metal (hydr)oxide nanosheets are discussed to draw a picture of enhancing the electrocatalysis performances through a series of electronic structure tuning strategies. Finally, perspectives on the current challenges and the trends for the future design of 2D metal (hydr)oxide electrocatalysts with prominent catalytic activity are outlined. It is expected that this Review can shed some light on the design of next generation electrocatalysts.
RESUMO
Two-dimensional (2D) ferroelectric materials are promising for use in high-performance nanoelectronic devices due to the non-volatility, high storage density, low energy cost and short response time originating from their bistable and switchable polarization states. In this mini review, we first discuss the mechanism and operation principles of ferroelectric devices to facilitate understanding of these novel nanoelectronics and then summarize the latest research progress of electronic devices based on 2D ferroelectrics. Finally, the perspectives for future research and development directions in various fields are provided. We expect this will provide an overview regarding the application of 2D ferroelectrics in electronic appliances.