Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Exp Dermatol ; 33(1): e14977, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38060347

RESUMO

Notch signalling has generated considerable interest as a pathogenetic factor and a drug target in a range of human diseases. The gamma-secretase complex is crucial in the activation of Notch receptors by cleaving the intracellular domain allowing nuclear translocation. In recent years several mutations in gamma-secretase components have been discovered in patients with familial hidradenitis suppurativa (HS). This has led to hypotheses that impaired Notch signalling could be an important driver for HS in general, not only in the monogenic variants. However, no study has examined in situ Notch activation per se in HS, and some reports with conflicting results have instead been based on expression of Notch receptors or indirect measures of Notch target gene expression. In this study we established immunostaining protocols to identify native, activated Notch receptors in human skin tissue. The ability to detect changes in Notch activation was confirmed with an ex vivo skin organ model in which signal was reduced or obliterated in tissue exposed to a gamma-secretase inhibitor. Using these methods on skin biopsies from healthy volunteers and a general HS cohort we demonstrated for the first time the distribution of active Notch signalling in human apocrine-bearing skin. Quantification of activated NOTCH1 & NOTCH2 revealed similar levels in non-lesional and peri-lesional HS to that of healthy controls, thus ruling out a general defect in Notch activation in HS patients. We did find a variable but significant reduction of activated Notch in epidermis of lesional HS with a distribution that appeared related to the extent of surrounding tissue inflammation.


Assuntos
Hidradenite Supurativa , Humanos , Hidradenite Supurativa/metabolismo , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Pele/metabolismo , Inflamação/metabolismo
2.
Hum Mol Genet ; 30(21): 1919-1931, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34124757

RESUMO

Sturge-Weber syndrome (SWS) is a neurocutaneous disorder characterized by vascular malformations affecting skin, eyes and leptomeninges of the brain, which can lead to glaucoma, seizures and intellectual disability. The discovery of a disease-causing somatic missense mutation in the GNAQ gene, encoding an alpha chain of heterotrimeric G-proteins, has initiated efforts to understand how G-proteins contribute to SWS pathogenesis. The mutation is predominantly detected in endothelial cells and is currently believed to affect downstream MAPK signalling. In this study of six Norwegian patients with classical SWS, we aimed to identify somatic mutations through deep sequencing of DNA from skin biopsies. Surprisingly, one patient was negative for the GNAQ mutation, but instead harbored a somatic mutation in GNB2 (NM_005273.3:c.232A>G, p.Lys78Glu), which encodes a beta chain of the same G-protein complex. The positions of the mutant amino acids in the G-protein are essential for complex reassembly. Therefore, failure of reassembly and continuous signalling is a likely consequence of both mutations. Ectopic expression of mutant proteins in endothelial cells revealed that expression of either mutant reduced cellular proliferation, yet regulated MAPK signalling differently, suggesting that dysregulated MAPK signalling cannot fully explain the SWS phenotype. Instead, both mutants reduced synthesis of Yes-associated protein (YAP), a transcriptional co-activator of the Hippo signalling pathway, suggesting a key role for this pathway in the vascular pathogenesis of SWS. The discovery of the GNB2 mutation sheds novel light on the pathogenesis of SWS and suggests that future research on targets of treatment should be directed towards the YAP, rather than the MAPK, signalling pathway.


Assuntos
Proteínas de Ligação ao GTP/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Síndrome de Sturge-Weber/diagnóstico , Síndrome de Sturge-Weber/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Proteínas de Ligação ao GTP/química , Frequência do Gene , Estudos de Associação Genética/métodos , Humanos , Pessoa de Meia-Idade , Modelos Moleculares , Nortriptilina , Fenótipo , Conformação Proteica , Subunidades Proteicas/genética , Relação Estrutura-Atividade , Sequenciamento do Exoma , Adulto Jovem
3.
Dermatology ; 238(1): 109-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33887725

RESUMO

BACKGROUND: The pathophysiology in atopic dermatitis (AD) is not fully understood, but immune dysfunction, skin barrier defects, and alterations of the skin microbiota are thought to play important roles. AD skin is frequently colonized with Staphylococcus aureus (S. aureus) and microbial diversity on lesional skin (LS) is reduced compared to on healthy skin. Treatment with narrow-band ultraviolet B (nb-UVB) leads to clinical improvement of the eczema and reduced abundance of S. aureus. However, in-depth knowledge of the temporal dynamics of the skin microbiota in AD in response to nb-UVB treatment is lacking and could provide important clues to decipher whether the microbial changes are primary drivers of the disease, or secondary to the inflammatory process. OBJECTIVES: To map the temporal shifts in the microbiota of the skin, nose, and throat in adult AD patients after nb-UVB treatment. METHODS: Skin swabs were taken from lesional AD skin (n = 16) before and after 3 treatments of nb-UVB, and after 6-8 weeks of full-body treatment. We also obtained samples from non-lesional skin (NLS) and from the nose and throat. All samples were characterized by 16S rRNA gene sequencing. RESULTS: We observed shifts towards higher diversity in the microbiota of lesional AD skin after 6-8 weeks of treatment, while the microbiota of NLS and of the nose/throat remained unchanged. After only 3 treatments with nb-UVB, there were no significant changes in the microbiota. CONCLUSION: Nb-UVB induces changes in the skin microbiota towards higher diversity, but the microbiota of the nose and throat are not altered.


Assuntos
Dermatite Atópica/microbiologia , Dermatite Atópica/radioterapia , Microbiota/efeitos da radiação , Pele/microbiologia , Terapia Ultravioleta , Adulto , Idoso , Biodiversidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nariz/microbiologia , Faringe/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/efeitos da radiação , Resultado do Tratamento , Adulto Jovem
4.
Mol Med ; 27(1): 29, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771098

RESUMO

BACKGROUND: Alarmins are considered proximal mediators of the immune response after tissue injury. Understanding their biology could pave the way for development of new therapeutic targets and biomarkers in human disease, including multiple trauma. In this study we explored high-resolution concentration kinetics of the alarmin interleukin-33 (IL-33) early after human trauma. METHODS: Plasma samples were serially collected from 136 trauma patients immediately after hospital admission, 2, 4, 6, and 8 h thereafter, and every morning in the ICU. Levels of IL-33 and its decoy receptor sST2 were measured by immunoassays. RESULTS: We observed a rapid and transient surge of IL-33 in a subset of critically injured patients. These patients had more widespread tissue injuries and a greater degree of early coagulopathy. IL-33 half-life (t1/2) was 1.4 h (95% CI 1.2-1.6). sST2 displayed a distinctly different pattern with low initial levels but massive increase at later time points. CONCLUSIONS: We describe for the first time early high-resolution IL-33 concentration kinetics in individual patients after trauma and correlate systemic IL-33 release to clinical data. These findings provide insight into a potentially important axis of danger signaling in humans.


Assuntos
Interleucina-33/sangue , Ferimentos e Lesões/sangue , Adulto , Biomarcadores/sangue , Feminino , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
5.
Exp Dermatol ; 30(2): 249-261, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33067891

RESUMO

Phototherapy with narrow-band Ultraviolet B (nb-UVB) is a major therapeutic option in atopic dermatitis (AD), yet knowledge of the early molecular responses to this treatment is lacking. The objective of this study was to map the early transcriptional changes in AD skin in response to nb-UVB treatment. Adult patients (n = 16) with AD were included in the study and scored with validated scoring tools. AD skin was irradiated with local nb-UVB on day 0, 2 and 4. Skin biopsies were taken before and after treatment (day 0 and 7) and analysed for genome-wide modulation of transcription. When examining the early response after three local UVB treatments, gene expression analysis revealed 77 significantly modulated transcripts (30 down- and 47 upregulated). Among them were transcripts related to the inflammatory response, melanin synthesis, keratinization and epidermal structure. Interestingly, the pro-inflammatory cytokine IL-36γ was reduced after treatment, while the anti-inflammatory cytokine IL-37 increased after treatment with nb-UVB. There was also a modulation of several other mediators involved in inflammation, among them defensins and S100 proteins. This is the first study of early transcriptomic changes in AD skin in response to nb-UVB. We reveal robust modulation of a small group of inflammatory and anti-inflammatory targets, including the IL-1 family members IL36γ and IL-37, which is evident before any detectable changes in skin morphology or immune cell infiltrates. These findings provide important clues to the molecular mechanisms behind the treatment response and shed light on new potential treatment targets.


Assuntos
Dermatite Atópica/genética , Dermatite Atópica/radioterapia , Interleucina-1/genética , Transcrição Gênica/efeitos da radiação , Terapia Ultravioleta , Adulto , Idoso , Defensinas/genética , Dermatite Atópica/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas S100/genética , Fatores de Tempo , Raios Ultravioleta , Adulto Jovem
6.
Am J Hum Genet ; 100(5): 737-750, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28457472

RESUMO

Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals.


Assuntos
Catepsina B/metabolismo , Elementos Facilitadores Genéticos , Eritema/genética , Duplicação Gênica , Regulação da Expressão Gênica , Ceratose/genética , Dermatopatias Genéticas/genética , Estudos de Casos e Controles , Catepsina B/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 8/genética , Variações do Número de Cópias de DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Epiderme/metabolismo , Epigenômica , Eritema/epidemiologia , Feminino , Marcadores Genéticos , Humanos , Queratinócitos/metabolismo , Ceratose/epidemiologia , Células MCF-7 , Masculino , Noruega/epidemiologia , Linhagem , Dermatopatias Genéticas/epidemiologia , África do Sul/epidemiologia
7.
Arterioscler Thromb Vasc Biol ; 38(4): 854-869, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29449332

RESUMO

OBJECTIVE: Endothelial upregulation of adhesion molecules serves to recruit leukocytes to inflammatory sites and appears to be promoted by NOTCH1; however, current models based on interactions between active NOTCH1 and NF-κB components cannot explain the transcriptional selectivity exerted by NOTCH1 in this context. APPROACH AND RESULTS: Observing that Cre/Lox-induced conditional mutations of endothelial Notch modulated inflammation in murine contact hypersensitivity, we found that IL (interleukin)-1ß stimulation induced rapid recruitment of RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) to genomic sites occupied by NOTCH1-RBPJ (recombination signal-binding protein for immunoglobulin kappa J region) and that NOTCH1 knockdown reduced histone H3K27 acetylation at a subset of NF-κB-directed inflammatory enhancers. CONCLUSIONS: Our findings reveal that NOTCH1 signaling supports the expression of a subset of inflammatory genes at the enhancer level and demonstrate how key signaling pathways converge on chromatin to coordinate the transition to an infla mmatory endothelial phenotype.


Assuntos
Células Endoteliais/efeitos dos fármacos , Histonas/metabolismo , Inflamação/prevenção & controle , Interleucina-1beta/farmacologia , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/metabolismo , Acetilação , Animais , Apendicite/metabolismo , Apendicite/patologia , Células Cultivadas , Dermatite de Contato/genética , Dermatite de Contato/metabolismo , Dermatite de Contato/patologia , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptor Notch1/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
8.
J Immunol ; 198(8): 3318-3325, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28258201

RESUMO

IL-33, required for viral clearance by cytotoxic T cells, is generally expressed in vascular endothelial cells in healthy human tissues. We discovered that endothelial IL-33 expression was stimulated as a response to adenoviral transduction. This response was dependent on MRE11, a sensor of DNA damage that can also be activated by adenoviral DNA, and on IRF1, a transcriptional regulator of cellular responses to viral invasion and DNA damage. Accordingly, we observed that endothelial cells responded to adenoviral DNA by phosphorylation of ATM and CHK2 and that depletion or inhibition of MRE11, but not depletion of ATM, abrogated IL-33 stimulation. In conclusion, we show that adenoviral transduction stimulates IL-33 expression in endothelial cells in a manner that is dependent on the DNA-binding protein MRE11 and the antiviral factor IRF1 but not on downstream DNA damage response signaling.


Assuntos
Infecções por Adenoviridae/imunologia , Dano ao DNA/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Interleucina-33/imunologia , Adenoviridae , Infecções por Adenoviridae/metabolismo , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Immunoblotting , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interleucina-33/biossíntese , Proteína Homóloga a MRE11 , Reação em Cadeia da Polimerase , Transfecção
9.
Hepatology ; 62(4): 1249-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25855031

RESUMO

UNLABELLED: Cholangiocytes express antigen-presenting molecules, but it has been unclear whether they can present antigens. Natural killer T (NKT) cells respond to lipid antigens presented by the major histocompatibility complex class I-like molecule CD1d and are abundant in the liver. We investigated whether cholangiocytes express CD1d and present lipid antigens to NKT cells and how CD1d expression varies in healthy and diseased bile ducts. Murine and human cholangiocyte cell lines as well as human primary cholangiocytes expressed CD1d as determined by flow cytometry and western blotting. Murine cholangiocyte cell lines were able to present both exogenous and endogenous lipid antigens to invariant and noninvariant NKT cell hybridomas and primary NKT cells in a CD1d-dependent manner. A human cholangiocyte cell line, cholangiocarcinoma cell lines, and human primary cholangiocytes also presented exogenous CD1d-restricted antigens to invariant NKT cell clones. CD1d expression was down-regulated in the biliary epithelium of patients with late primary sclerosing cholangitis, primary biliary cirrhosis, and alcoholic cirrhosis compared to healthy controls. CONCLUSIONS: Cholangiocytes express CD1d and present antigens to NKT cells and CD1d expression is down-regulated in diseased biliary epithelium, findings which show that the biliary epithelium can activate an important lymphocyte subset of the liver. This is a potentially important immune pathway in the biliary system, which may be capable of regulating inflammation in the context of biliary disease.


Assuntos
Ductos Biliares/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/fisiologia , Células Cultivadas , Células Epiteliais/imunologia , Epitélio/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
10.
Eur J Immunol ; 44(9): 2625-37, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24846412

RESUMO

Tumor-specific Th1 cells can activate tumor-infiltrating macrophages that eliminate MHC class II negative (MHC II(NEG)) tumor cells. Activated M1-like macrophages lack antigen (Ag) receptors, and are presumably unable to discriminate and thus kill both Ag-positive (Ag(POS)) and Ag-negative (Ag(NEG)) tumor cells (bystander killing). The lack of specificity of macrophage-mediated cytotoxicity might be of clinical importance as it could provide a means of avoiding tumor escape. Here, we have tested this idea using mixed populations of Ag(POS) and Ag(NEG) tumor cells in a TCR-transgenic model in which CD4(+) T cells recognize a secreted tumor-specific antigen. Surprisingly, while Ag(POS) tumor cells were recognized and rejected, Ag(NEG) cells grew unimpeded and formed tumors. We further demonstrated that macrophage-mediated cytotoxicity was spatially restricted to areas dominated by Ag(POS) tumor cells, sparing Ag(NEG) tumor cells in the vicinity. As a consequence, macrophage tumoricidal activity did not confer bystander killing in vivo. The present results offer novel insight into the mechanisms of indirect Th1-mediated elimination of MHC II(NEG) tumor cells.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Celular/fisiologia , Macrófagos/imunologia , Neoplasias Experimentais/imunologia , Células Th1/imunologia , Animais , Antígenos de Histocompatibilidade Classe II/genética , Camundongos , Camundongos SCID , Camundongos Transgênicos , Neoplasias Experimentais/genética
11.
Arterioscler Thromb Vasc Biol ; 33(2): e47-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23162017

RESUMO

OBJECTIVE: Interleukin (IL)-33 is a nuclear protein that is released from stressed or damaged cells to act as an alarmin. We investigated the effects of IL-33 on endothelial cells, using the prototype IL-1 family member, IL-1ß, as a reference. METHODS AND RESULTS: Human umbilical vein endothelial cells were stimulated with IL-33 or IL-1ß, showing highly similar phosphorylation of signaling molecules, induction of adhesion molecules, and transcription profiles. However, intradermally injected IL-33 elicited significantly less proinflammatory endothelial activation when compared with IL-1ß and led us to observe that quiescent endothelial cells (ppRb(low)p27(high)) were strikingly resistant to IL-33. Accordingly, the IL-33 receptor was preferentially expressed in nonquiescent cells of low-density cultures, corresponding to selective induction of adhesion molecules and chemokines. Multiparameter phosphoflow cytometry confirmed that signaling driven by IL-33 was stronger in nonquiescent cells. Manipulation of nuclear IL-33 expression by siRNA or adenoviral transduction revealed no functional link between nuclear, endogenous IL-33, and exogenous IL-33 responsiveness. CONCLUSIONS: In contrast to other inflammatory cytokines, IL-33 selectively targets nonquiescent endothelial cells. By this novel concept, quiescent cells may remain nonresponsive to a proinflammatory stimulus that concomitantly triggers a powerful response in cells that have been released from contact inhibition.


Assuntos
Proliferação de Células , Dermatite/imunologia , Células Endoteliais/imunologia , Mediadores da Inflamação/metabolismo , Interleucinas/metabolismo , Pele/irrigação sanguínea , Adenoviridae/genética , Animais , Biópsia , Células Cultivadas , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Dermatite/patologia , Selectina E/metabolismo , Células Endoteliais/patologia , Feminino , Citometria de Fluxo , Vetores Genéticos , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-33 , Interleucinas/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neovascularização Fisiológica , Fosforilação , Interferência de RNA , Receptores de Interleucina/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Transcrição Gênica , Transdução Genética , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Sci Rep ; 11(1): 108, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420328

RESUMO

Interleukin (IL)-33 is a cytokine that appears to mediate fibrosis by signaling via its receptor ST2 (IL-33R/IL1RL1). It is also, however, a protein that after synthesis is sorted to the cell nucleus, where it appears to affect chromatin folding. Here we describe a novel role for nuclear IL-33 in regulating the fibroblast phenotype in murine kidney fibrosis driven by unilateral ureteral obstruction. Transcriptional profiling of IL-33-deficient kidneys 24 h after ligation revealed enhanced expression of fibrogenic genes and enrichment of gene sets involved in extracellular matrix formation and remodeling. These changes relied on intracellular effects of IL-33, because they were not reproduced by treatment with a neutralizing antibody to IL-33 that prevents IL-33R/ST2L receptor signaling nor were they observed in IL-33R/ST2-deficient kidneys. To further explore the intracellular function of IL-33, we established transcription profiles of human fibroblasts, observing that knockdown of IL-33 skewed the transcription profile from an inflammatory towards a myofibroblast phenotype, reflected in higher levels of COL3A1, COL5A1 and transgelin protein, as well as lower expression levels of IL6, CXCL8, CLL7 and CCL8. In conclusion, our findings suggest that nuclear IL-33 in fibroblasts dampens the initial profibrotic response until persistent stimuli, as enforced by UUO, can override this protective mechanism.


Assuntos
Núcleo Celular/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Interleucina-33/metabolismo , Animais , Núcleo Celular/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Matriz Extracelular/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Rim/citologia , Rim/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo
13.
Sci Rep ; 10(1): 6451, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296080

RESUMO

Current studies addressing the influence of interleukin-33 or its receptor (IL-33R/ST2) on development of atopic dermatitis-like inflammation in mice have reported conflicting results. We compared the response in single- and double-deficient IL-33-/-/ST2-/- C57BL/6J BomTac mice in the well-established calcipotriol-induced model of atopic dermatitis. All genotypes (groups of up to 14 mice) developed atopic dermatitis-like inflammation yet we observed no biologically relevant difference between groups in gross anatomy or ear thickness. Moreover, histological examination of skin revealed no differences in mononuclear leukocyte and granulocyte infiltration nor Th2 cytokine levels (IL-4 and IL-13). Finally, skin CD45+ cells and CD3+ cells were found at similar densities across all groups. Our findings indicate that lack of interleukin-33 and its receptor ST2 does not prevent the development of AD-like skin inflammation.


Assuntos
Dermatite Atópica/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/deficiência , Interleucina-33/deficiência , Transdução de Sinais/imunologia , Animais , Calcitriol/análogos & derivados , Calcitriol/imunologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/genética , Interleucina-33/imunologia , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia
14.
J Invest Dermatol ; 139(1): 81-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120934

RESUMO

Although inflammation has traditionally been considered a response to either exogenous pathogen-associated signals or endogenous signals of cell damage, other perturbations of homeostasis, generally referred to as stress, may also induce inflammation. The relationship between stress and inflammation is, however, not well defined. Here, we describe a mechanism of IL-33 induction driven by hypo-osmotic stress in human keratinocytes and also report interesting differences when comparing the responsiveness of other inflammatory mediators. The induction of IL-33 was completely dependent on EGFR and calcium signaling, and inhibition of calcium signaling not only abolished IL-33 induction but also dramatically changed the transcriptional pattern of other cytokines upon hypo-osmotic stress. IL-33 was not secreted but instead showed nuclear sequestration, conceivably acting as a failsafe mechanism whereby it is induced by potential danger but released only upon more extreme homeostatic perturbations that result in cell death. Finally, stress-induced IL-33 was also confirmed in an ex vivo human skin model, translating this mechanism to a potential tissue-relevant signal in the human epidermis. In conclusion, we describe hypo-osmotic stress as an inducer of IL-33 expression, linking cellular stress to nuclear accumulation of a strong proinflammatory cytokine.


Assuntos
Regulação da Expressão Gênica , Inflamação/genética , Interleucina-33/genética , Queratinócitos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-33/biossíntese , Queratinócitos/patologia , Microscopia de Contraste de Fase , Pressão Osmótica , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
15.
Sci Rep ; 6: 35403, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748438

RESUMO

Interleukin 33 (IL-33) is a cytokine preferentially elevated in acute ulcerative colitis (UC), inferring a role in its pathogenesis. The role of IL-33 in intestinal inflammation is incompletely understood, with both pro-inflammatory and regulatory properties described. There are also conflicting reports on cellular sources and subcellular location of IL-33 in the colonic mucosa, justifying a closer look at IL-33 expression in well-defined clinical stages of UC. A total of 50 study participants (29 UC patients and 21 healthy controls) were included from a prospective cohort of inflammatory bowel disease patients treated to disease remission with infliximab, a tumour necrosis factor alpha (TNF) inhibitor. To our knowledge this is the first study examining mucosal IL-33 expression before and after anti-TNF therapy. In colonic mucosal biopsies we found a 3-fold increase in IL-33 gene expression comparing acute UC to healthy controls (p < 0.01). A significant reduction of IL33 between acute UC and disease remission was observed when TNF normalised in the mucosa (p = 0.02). Immunostaining revealed IL-33 in the nuclei of epithelial cells of scattered colonic crypts in acute disease, while at disease remission, IL-33 was undetectable, a novel finding suggesting that enterocyte-derived IL-33 is induced and maintained by inflammatory mediators.


Assuntos
Colite Ulcerativa/genética , Expressão Gênica , Interleucina-33/genética , Mucosa Intestinal/metabolismo , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Feminino , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Interleucina-33/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
16.
J Invest Dermatol ; 135(7): 1771-1780, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25739051

RESUMO

IL-33 is a novel IL-1 family member with a putative role in inflammatory skin disorders and a complex biology. Therefore, recent conflicting data regarding its function in experimental models justify a close assessment of its tissue expression and regulation. Indeed, we report here that there are strong species differences in the expression and regulation of epidermal IL-33. In murine epidermis, IL-33 behaved similar to an alarmin, being constitutively expressed in keratinocyte nuclei and rapidly lost during acute inflammation. By contrast, human and porcine IL-33 were weakly expressed or absent in keratinocytes of noninflamed skin but induced during acute inflammation. To this end, we observed that expression of IL-33 in human keratinocytes but not murine keratinocytes was strongly induced by IFN-γ, and this upregulation completely depended on the presence of EGFR ligands. Accordingly, IFN-γ increased the expression of IL-33 in the basal layers of the epidermis in human ex vivo skin cultures only, despite good evidence of IFN-γ activity in cultures from both species. Together these findings demonstrate that a full understanding of IL-33 function in clinical settings must take species-specific differences into account.


Assuntos
Dermatite/genética , Epiderme/imunologia , Regulação da Expressão Gênica , Inflamação/genética , Interleucinas/genética , Adulto , Animais , Biópsia por Agulha , Western Blotting , Dermatite/fisiopatologia , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/patologia , Feminino , Homeostase/genética , Homeostase/fisiologia , Humanos , Imuno-Histoquímica , Inflamação/fisiopatologia , Interleucina-33 , Queratinócitos/imunologia , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estudos de Amostragem , Especificidade da Espécie , Sus scrofa , Suínos , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA