Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 300(3): 105740, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340794

RESUMO

Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.


Assuntos
Citoesqueleto de Actina , Actinas , Leishmania major , Parasitos , Profilinas , Animais , Humanos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalização , Cristalografia por Raios X , Leishmania major/citologia , Leishmania major/metabolismo , Parasitos/citologia , Parasitos/metabolismo , Profilinas/química , Profilinas/metabolismo , Ligação Proteica , Domínios Proteicos
2.
Mol Microbiol ; 121(1): 53-68, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010644

RESUMO

Leishmania are flagellated eukaryotic parasites that cause leishmaniasis and are closely related to the other kinetoplastid parasites such as Trypanosoma brucei. In all these parasites there is a cell membrane invagination at the base of the flagellum called the flagellar pocket, which is tightly associated with and sculpted by cytoskeletal structures including the flagellum attachment zone (FAZ). The FAZ is a complex interconnected structure linking the flagellum to the cell body and has critical roles in cell morphogenesis, function and pathogenicity. However, this structure varies dramatically in size and organisation between these different parasites, suggesting changes in protein localisation and function. Here, we screened the localisation and function of the Leishmania orthologues of T. brucei FAZ proteins identified in the genome-wide protein tagging project TrypTag. We identified 27 FAZ proteins and our deletion analysis showed that deletion of two FAZ proteins in the flagellum, FAZ27 and FAZ34 resulted in a reduction in cell body size, and flagellum loss in some cells. Furthermore, after null mutant generation, we observed distinct and reproducible changes to cell shape, demonstrating the ability of the parasite to adapt to morphological perturbations resulting from gene deletion. This process of adaptation has important implications for the study of Leishmania mutants.


Assuntos
Leishmania , Leishmaniose , Trypanosoma brucei brucei , Humanos , Leishmania/genética , Leishmania/metabolismo , Flagelos/metabolismo , Citoesqueleto/metabolismo , Leishmaniose/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
Annu Rev Microbiol ; 73: 133-154, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500537

RESUMO

Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of (a) the nucleus, (b) the kinetoplast, and (c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.


Assuntos
Ciclo Celular , Trypanosoma brucei brucei/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , DNA de Cinetoplasto/metabolismo , DNA de Protozoário/metabolismo , Regulação da Expressão Gênica
4.
Mol Microbiol ; 118(5): 510-525, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056717

RESUMO

The closely related parasites Trypanosoma brucei, T. congolense, and T. vivax cause neglected tropical diseases collectively known as African Trypanosomiasis. A characteristic feature of bloodstream form T. brucei is the flagellum that is laterally attached to the side of the cell body. During the cell cycle, the new flagellum is formed alongside the old flagellum, with the new flagellum tip embedded within a mobile transmembrane junction called the groove. The molecular composition of the groove is currently unknown, which limits the analysis of this junction and assessment of its conservation in related trypanosomatids. Here, we identified 13 proteins that localize to the flagellar groove through a small-scale tagging screen. Functional analysis of a subset of these proteins by RNAi and gene deletion revealed three proteins, FCP4/TbKin15, FCP7, and FAZ45, that are involved in new flagellum tip attachment to the groove. Despite possessing orthologues of all 13 groove proteins, T. congolense and T. vivax did not assemble a canonical groove around the new flagellum tip according to 3D electron microscopy. This diversity in new flagellum tip attachment points to the rapid evolution of membrane-cytoskeleton structures that can occur without large changes in gene complement and likely reflects the niche specialization of each species.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Trypanosoma/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia , Flagelos/genética , Flagelos/metabolismo , Citoesqueleto/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
5.
J Cell Sci ; 133(10)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32295845

RESUMO

Eukaryotic flagella are complex microtubule-based organelles that, in many organisms, contain extra-axonemal structures, such as the outer dense fibres of mammalian sperm and the paraflagellar rod (PFR) of trypanosomes. Flagellum assembly is a complex process occurring across three main compartments, the cytoplasm, the transition zone and the flagellum itself. The process begins with the translation of protein components followed by their sorting and trafficking into the flagellum, transport to the assembly site and incorporation. Flagella are formed from over 500 proteins and the principles governing assembly of the axonemal components are relatively clear. However, the coordination and location of assembly of extra-axonemal structures are less clear. We have discovered two cytoplasmic proteins in Trypanosoma brucei that are required for PFR formation, PFR assembly factors 1 and 2 (PFR-AF1 and PFR-AF2, respectively). Deletion of either PFR-AF1 or PFR-AF2 dramatically disrupted PFR formation and caused a reduction in the amount of major PFR proteins. The existence of cytoplasmic factors required for PFR formation aligns with the concept that processes facilitating axoneme assembly occur across multiple compartments, and this is likely a common theme for extra-axonemal structure assembly.


Assuntos
Axonema , Trypanosoma brucei brucei , Animais , Cílios , Flagelos , Proteínas de Protozoários/genética
6.
PLoS Pathog ; 16(10): e1008494, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33091070

RESUMO

The shape and form of the flagellated eukaryotic parasite Leishmania is sculpted to its ecological niches and needs to be transmitted to each generation with great fidelity. The shape of the Leishmania cell is defined by the sub-pellicular microtubule array and the positioning of the nucleus, kinetoplast and the flagellum within this array. The flagellum emerges from the anterior end of the cell body through an invagination of the cell body membrane called the flagellar pocket. Within the flagellar pocket the flagellum is laterally attached to the side of the flagellar pocket by a cytoskeletal structure called the flagellum attachment zone (FAZ). During the cell cycle single copy organelles duplicate with a new flagellum assembling alongside the old flagellum. These are then segregated between the two daughter cells by cytokinesis, which initiates at the anterior cell tip. Here, we have investigated the role of the FAZ in the morphogenesis of the anterior cell tip. We have deleted the FAZ filament protein, FAZ2 and investigated its function using light and electron microscopy and infection studies. The loss of FAZ2 caused a disruption to the membrane organisation at the anterior cell tip, resulting in cells that were connected to each other by a membranous bridge structure between their flagella. Moreover, the FAZ2 null mutant was unable to develop and proliferate in sand flies and had a reduced parasite burden in mice. Our study provides a deeper understanding of membrane-cytoskeletal interactions that define the shape and form of an individual cell and the remodelling of that form during cell division.


Assuntos
Citoesqueleto/metabolismo , Flagelos/fisiologia , Interações Hospedeiro-Parasita , Leishmania/crescimento & desenvolvimento , Leishmaniose/parasitologia , Morfogênese , Psychodidae/parasitologia , Animais , Membrana Celular , Citocinese , Feminino , Flagelos/ultraestrutura , Leishmania/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(13): 6351-6360, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850532

RESUMO

Leishmania kinetoplastid parasites infect millions of people worldwide and have a distinct cellular architecture depending on location in the host or vector and specific pathogenicity functions. An invagination of the cell body membrane at the base of the flagellum, the flagellar pocket (FP), is an iconic kinetoplastid feature, and is central to processes that are critical for Leishmania pathogenicity. The Leishmania FP has a bulbous region posterior to the FP collar and a distal neck region where the FP membrane surrounds the flagellum more closely. The flagellum is attached to one side of the FP neck by the short flagellum attachment zone (FAZ). We addressed whether targeting the FAZ affects FP shape and its function as a platform for host-parasite interactions. Deletion of the FAZ protein, FAZ5, clearly altered FP architecture and had a modest effect in endocytosis but did not compromise cell proliferation in culture. However, FAZ5 deletion had a dramatic impact in vivo: Mutants were unable to develop late-stage infections in sand flies, and parasite burdens in mice were reduced by >97%. Our work demonstrates the importance of the FAZ for FP function and architecture. Moreover, we show that deletion of a single FAZ protein can have a large impact on parasite development and pathogenicity.


Assuntos
Cílios/fisiologia , Flagelos/fisiologia , Leishmania/fisiologia , Leishmania/patogenicidade , Psychodidae/parasitologia , Animais , Membrana Celular/metabolismo , Cílios/genética , Cílios/ultraestrutura , Endocitose , Flagelos/genética , Flagelos/ultraestrutura , Deleção de Genes , Interações Hospedeiro-Parasita , Junções Intercelulares , Leishmania/genética , Leishmania/ultraestrutura , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Virulência/genética
8.
Mol Microbiol ; 112(3): 1024-1040, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31286583

RESUMO

Differentiation of Trypanosoma brucei, a flagellated protozoan parasite, between life cycle stages typically occurs through an asymmetric cell division process, producing two morphologically distinct daughter cells. Conversely, proliferative cell divisions produce two daughter cells, which look similar but are not identical. To examine in detail differences between the daughter cells of a proliferative division of procyclic T. brucei we used the recently identified constituents of the flagella connector. These segregate asymmetrically during cytokinesis allowing the new-flagellum and the old-flagellum daughters to be distinguished. We discovered that there are distinct morphological differences between the two daughters, with the new-flagellum daughter in particular re-modelling rapidly and extensively in early G1. This re-modelling process involves an increase in cell body, flagellum and flagellum attachment zone length and is accompanied by architectural changes to the anterior cell end. The old-flagellum daughter undergoes a different G1 re-modelling, however, despite this there was no difference in G1 duration of their respective cell cycles. This work demonstrates that the two daughters of a proliferative division of T. brucei are non-equivalent and enables more refined morphological analysis of mutant phenotypes. We suggest all proliferative divisions in T. brucei and related organisms will involve non-equivalence.


Assuntos
Flagelos/metabolismo , Trypanosoma brucei brucei/citologia , Divisão Celular , Proliferação de Células , Citocinese , Flagelos/genética , Estágios do Ciclo de Vida , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo
9.
J Cell Sci ; 129(4): 854-67, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26746239

RESUMO

Leishmania promastigote parasites have a flagellum, which protrudes from the flagellar pocket at the cell anterior, yet, surprisingly, have homologs of many flagellum attachment zone (FAZ) proteins--proteins used in the related Trypanosoma species to laterally attach the flagellum to the cell body from the flagellar pocket to the cell posterior. Here, we use seven Leishmania mexicana cell lines that expressed eYFP fusions of FAZ protein homologs to show that the Leishmania flagellar pocket includes a FAZ structure. Electron tomography revealed a precisely defined 3D organisation for both the flagellar pocket and FAZ, with striking similarities to those of Trypanosoma brucei. Expression of two T. brucei FAZ proteins in L. mexicana showed that T. brucei FAZ proteins can assemble into the Leishmania FAZ structure. Leishmania therefore have a previously unrecognised FAZ structure, which we show undergoes major structural reorganisation in the transition from the promastigote (sandfly vector) to amastigote (in mammalian macrophages). Morphogenesis of the Leishmania flagellar pocket, a structure important for pathogenicity, is therefore intimately associated with a FAZ; a finding with implications for understanding shape changes involving component modules during evolution.


Assuntos
Flagelos/metabolismo , Leishmania mexicana/ultraestrutura , Proteínas de Protozoários/metabolismo , Axonema/metabolismo , Axonema/ultraestrutura , Flagelos/ultraestrutura , Leishmania mexicana/fisiologia , Transporte Proteico , Trypanosoma brucei brucei/ultraestrutura
10.
J Cell Sci ; 128(8): 1580-94, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25736289

RESUMO

Plasma membrane-to-plasma membrane connections are common features of eukaryotic cells, with cytoskeletal frameworks below the respective membranes underpinning these connections. A defining feature of Trypanosoma brucei is the lateral attachment of its single flagellum to the cell body, which is mediated by a cytoskeletal structure called the flagellum attachment zone (FAZ). The FAZ is a key morphogenetic structure. Disruption of FAZ assembly can lead to flagellum detachment and dramatic changes in cell shape. To understand this complex structure, the identity of more of its constituent proteins is required. Here, we have used both proteomics and bioinformatics to identify eight new FAZ proteins. Using inducible expression of FAZ proteins tagged with eYFP we demonstrate that the site of FAZ assembly is close to the flagellar pocket at the proximal end of the FAZ. This contrasts with the flagellum, which is assembled at its distal end; hence, these two interconnected cytoskeletal structures have distinct spatially separated assembly sites. This challenging result has many implications for understanding the process of cell morphogenesis and interpreting mutant phenotypes.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Flagelos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/citologia , Morfogênese
11.
J Cell Sci ; 128(16): 3117-30, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26148511

RESUMO

The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure - the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms.


Assuntos
Forma Celular/genética , Citoesqueleto/genética , Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Animais , Cílios/genética , Cílios/metabolismo , Citocinese/genética , Citoesqueleto/metabolismo , Flagelos/genética , Flagelos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Microtúbulos/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento
12.
Parasit Vectors ; 17(1): 215, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734633

RESUMO

BACKGROUND: Animal African trypanosomiasis, which is caused by different species of African trypanosomes, is a deadly disease in livestock. Although African trypanosomes are often described as blood-borne parasites, there have been recent reappraisals of the ability of these parasites to reside in a wide range of tissues. However, the majority of those studies were conducted on non-natural hosts infected with only one species of trypanosome, and it is unclear whether a similar phenomenon occurs during natural animal infections, where multiple species of these parasites may be present. METHODS: The infective trypanosome species in the blood and other tissues (adipose and skin) of a natural host (cows, goats and sheep) were determined using a polymerase chain reaction-based diagnostic. RESULTS: The animals were found to harbour multiple species of trypanosomes. Different patterns of distribution were observed within the host tissues; for instance, in some animals, the blood was positive for the DNA of one species of trypanosome and the skin and adipose were positive for the DNA of another species. Moreover, the rate of detection of trypanosome DNA was highest for skin adipose and lowest for the blood. CONCLUSIONS: The findings reported here emphasise the complexity of trypanosome infections in a natural setting, and may indicate different tissue tropisms between the different parasite species. The results also highlight the need to include adipose and skin tissues in future diagnostic and treatment strategies.


Assuntos
Tecido Adiposo , Doenças das Cabras , Cabras , Pele , Trypanosoma , Tripanossomíase Africana , Animais , Cabras/parasitologia , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/parasitologia , Tecido Adiposo/parasitologia , Trypanosoma/genética , Trypanosoma/isolamento & purificação , Trypanosoma/classificação , Pele/parasitologia , Ovinos/parasitologia , Doenças das Cabras/parasitologia , Bovinos , Reação em Cadeia da Polimerase , Doenças dos Ovinos/parasitologia , DNA de Protozoário/genética , Doenças dos Bovinos/parasitologia
13.
Acta Trop ; 237: 106721, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257455

RESUMO

African Trypanosomiasis is a debilitating disease in both humans and animals that occurs in sub-Saharan Africa and has a severe negative impact on the livelihood of people in the affected areas. The disease is caused by protozoan parasites of the genus Trypanosoma, which is often described simply as blood-borne; however, a number of studies have shown the parasite inhabits many different environments within the host. Control of the disease involves measures that include the use of trypanocidal drugs to which there are growing number of reported cases of resistance. Here, the patterns of trypanosome DNA presence during a diminazene aceturate treatment round on a cohort of cattle in Adidome, Ghana were assessed. A group of 24 cows were selected irrespective of age and sex and the infecting trypanosome species followed for 18 days before and after treatment with diminazene aceturate in the blood and skin of the animals using a diagnostic nested PCR that targeted the alpha-beta tubulin gene array. Persistence of trypanosome DNA was observed over the period and parasite DNA was readily detected in both the skin and blood, with parasite DNA disappearing and reappearing in both across the study. Moreover, there was limited correlation between the parasite DNA detected in the skin and blood. Overall, the data show the patterns of a natural trypanosome infection during drug treatment. In addition, the diagnostic potential of sampling the skin for African trypanosomiasis is highlighted.


Assuntos
Tripanossomicidas , Trypanosoma , Tripanossomíase Africana , Humanos , Feminino , Bovinos , Animais , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Fazendas , Gana/epidemiologia , Trypanosoma/genética , Diminazena/farmacologia , Diminazena/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Resistência a Medicamentos
14.
Trends Parasitol ; 39(5): 328-331, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36925446

RESUMO

TrypTag was a 4-year project to tag the N- and C-termini of almost all Trypanosoma brucei proteins with a fluorescent protein and record the subcellular localisation through images and manual annotation. We highlight the new routes to cell biological discovery this transformative resource is enabling for parasitologists and cell biologists.


Assuntos
Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transporte Proteico
15.
Trends Parasitol ; 39(5): 332-344, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933967

RESUMO

A key morphological feature of kinetoplastid parasites is the position and length of flagellum attachment to the cell body. This lateral attachment is mediated by the flagellum attachment zone (FAZ), a large complex cytoskeletal structure, which is essential for parasite morphogenesis and pathogenicity. Despite the complexity of the FAZ only two transmembrane proteins, FLA1 and FLA1BP, are known to interact and connect the flagellum to the cell body. Across the different kinetoplastid species, each only has a single FLA/FLABP pair, except in Trypanosoma brucei and Trypanosoma congolense where there has been an expansion of these genes. Here, we focus on the selection pressure behind the evolution of the FLA/FLABP proteins and the likely impact this will have on host-parasite interactions.


Assuntos
Flagelos , Trypanosoma brucei brucei , Proteínas de Membrana/metabolismo , Citoesqueleto , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
16.
Elife ; 122023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162189

RESUMO

Attachment to a substrate to maintain position in a specific ecological niche is a common strategy across biology, especially for eukaryotic parasites. During development in the sand fly vector, the eukaryotic parasite Leishmania adheres to the stomodeal valve, as the specialised haptomonad form. Dissection of haptomonad adhesion is a critical step for understanding the complete life cycle of Leishmania. Nevertheless, haptomonad studies are limited, as this is a technically challenging life cycle form to investigate. Here, we have combined three-dimensional electron microscopy approaches, including serial block face scanning electron microscopy (SBFSEM) and serial tomography to dissect the organisation and architecture of haptomonads in the sand fly. We showed that the attachment plaque contains distinct structural elements. Using time-lapse light microscopy of in vitro haptomonad-like cells, we identified five stages of haptomonad-like cell differentiation, and showed that calcium is necessary for Leishmania adhesion to the surface in vitro. This study provides the structural and regulatory foundations of Leishmania adhesion, which are critical for a holistic understanding of the Leishmania life cycle.


Assuntos
Leishmania , Psychodidae , Animais , Microscopia Eletrônica
17.
PLoS Pathog ; 5(6): e1000468, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19503825

RESUMO

Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC.


Assuntos
Membrana Celular/metabolismo , Flagelos/metabolismo , Glicosilfosfatidilinositol Diacilglicerol-Liase/metabolismo , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Western Blotting , Detergentes/química , Glicosilfosfatidilinositol Diacilglicerol-Liase/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
18.
Trends Parasitol ; 37(4): 317-329, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33308952

RESUMO

The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.


Assuntos
Trypanosomatina , Flagelos/ultraestrutura , Interações Hospedeiro-Parasita , Relação Estrutura-Atividade , Trypanosomatina/patogenicidade , Trypanosomatina/fisiologia , Trypanosomatina/ultraestrutura
19.
Parasitol Res ; 106(2): 357-65, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19902251

RESUMO

Theileria parva causes East Coast fever, an economically important disease of cattle in sub-Saharan Africa. We describe a nested polymerase chain reaction (nPCR) assay for the detection of T. parva DNA in cattle blood spotted onto filter paper using primers derived from the T. parva-specific 104-kDa antigen (p104) gene. The sensitivity of this assay was compared to a previously described p104-based PCR and also the reverse line blot (RLB) technique, using serial dilutions of blood from a calf with known T. parva piroplasm parasitaemia. The relative sensitivities of the three assays were 0.4, 1.4 and 4 parasites/microl corresponding to blood parasitaemias of 9.2 x 10(-6)%, 2.8 x 10(-5)% and 8.3 x 10(-5)%, respectively. The three assays were applied to samples from two calves infected with the T. parva Muguga stock. Parasite DNA was consistently detectable by the two p104 PCR assays until 48 and 82 days post-infection, respectively, and thereafter sporadically. RLB detected parasite DNA in the two infected calves until days 43 and 45. Field samples from 151 Kenyan cattle exhibited 37.7% positivity for T. parva by regular p104 PCR and 42.3% positivity using p104 nPCR. Among 169 cattle blood samples from Southern Sudan, 36% were positive for T. parva using nPCR. The nPCR assay represents a highly sensitive tool for detection and monitoring of asymptomatic carrier state infections of T. parva in the blood of cattle.


Assuntos
Sangue/parasitologia , Portador Sadio/veterinária , DNA de Protozoário/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Theileria parva/isolamento & purificação , Theileriose/diagnóstico , Animais , Antígenos de Protozoários/genética , Portador Sadio/diagnóstico , Bovinos , Primers do DNA/genética , DNA de Protozoário/genética , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Sudão , Theileria parva/genética
20.
Microbiologyopen ; 9(2): e969, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743959

RESUMO

The Leishmania lysosome has an atypical structure, consisting of an elongated vesicle-filled tubule running along the anterior-posterior axis of the cell, which is termed the multivesicular tubule (MVT) lysosome. Alongside, the MVT lysosome is one or more microtubules, the lysosomal microtubule(s). Previous work indicated there were cell cycle-related changes in MVT lysosome organization; however, these only provided snapshots and did not connect the changes in the lysosomal microtubule(s) or lysosomal function. Using mNeonGreen tagged cysteine peptidase A and SPEF1 as markers of the MVT lysosome and lysosomal microtubule(s), we examined the dynamics of these structures through the cell cycle. Both the MVT lysosome and lysosomal microtubule(s) elongated at the beginning of the cell cycle before plateauing and then disassembling in late G2 before cytokinesis. Moreover, the endocytic rate in cells where the MVT lysosome and lysosomal microtubule(s) had disassembled was extremely low. The dynamic nature of the MVT lysosome and lysosomal microtubule(s) parallels that of the Trypanosoma cruzi cytostome/cytopharynx, which also has a similar membrane tubule structure with associated microtubules. As the cytostome/cytopharynx is an ancestral feature of the kinetoplastids, this suggests that the Leishmania MVT lysosome and lysosomal microtubule(s) are a reduced cytostome/cytopharynx-like feature.


Assuntos
Endocitose , Interações Hospedeiro-Parasita , Leishmania/fisiologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Lisossomos/parasitologia , Divisão Celular , Citocinese , Flagelos , Leishmania/ultraestrutura , Leishmaniose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA