Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895019

RESUMO

The study of neurodevelopmental molecular mechanisms in schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously utilized cell lines with neural progenitor properties (CNON) derived from the superior or middle turbinates of patients with schizophrenia and control groups to study schizophrenia-specific gene expression. In this study, we analyzed single-cell RNA seq data from two CNON cell lines (one derived from an individual with schizophrenia (SCZ) and the other from a control group) and two biopsy samples from the middle turbinate (MT) (also from an individual with SCZ and a control). We compared our data with previously published data regarding the olfactory neuroepithelium and demonstrated that CNON originated from a single cell type present both in middle turbinate and the olfactory neuroepithelium and expressed in multiple markers of mesenchymal cells. To define the relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data derived from an embryonic brain and found that the expression profile of the CNON closely matched the expression profile one of the cell types in the embryonic brain. Finally, we evaluated the differences between SCZ and control samples to assess the utility and potential benefits of using CNON single-cell RNA seq to study the etiology of schizophrenia.


Assuntos
Células-Tronco Neurais , Esquizofrenia , Humanos , Conchas Nasais/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Células Cultivadas , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo
2.
Front Physiol ; 14: 1155976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654674

RESUMO

Voltage-gated Ca2+ channels (VGCC) directly control muscle contraction and neurotransmitter release, and slower processes such as cell differentiation, migration, and death. They are potently inhibited by RGK GTP-ases (Rem, Rem2, Rad, and Gem/Kir), which decrease Ca2+ channel membrane expression, as well as directly inhibit membrane-resident channels. The mechanisms of membrane-resident channel inhibition are difficult to study because RGK-overexpression causes complete or near complete channel inhibition. Using titrated levels of Gem expression in Xenopus oocytes to inhibit WT P/Q-type calcium channels by ∼50%, we show that inhibition is dependent on channel inactivation. Interestingly, fast-inactivating channels, including Familial Hemiplegic Migraine mutants, are more potently inhibited than WT channels, while slow-inactivating channels, such as those expressed with the Cavß2a auxiliary subunit, are spared. We found similar results in L-type channels, and, remarkably, Timothy Syndrome mutant channels were insensitive to Gem inhibition. Further results suggest that RGKs slow channel recovery from inactivation and further implicate RGKs as likely modulating factors in channelopathies.

3.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034711

RESUMO

Study of the neurodevelopmental molecular mechanisms of schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously used cell lines with neural progenitor properties (CNON) derived from superior or middle turbinates of patients with schizophrenia and control groups to study gene expression specific to schizophrenia. In this study, we compared single cell-RNA seq data from two CNON cell lines, one derived from an individual with schizophrenia (SCZ) and the other from a control group, with two biopsy samples from the middle turbinate (MT), also from an individual with SCZ and a control. In addition, we compared our data with previously published data from olfactory neuroepithelium (1). Our data demonstrated that CNON originated from a single cell type which is present both in middle turbinate and olfactory neuroepithelium. CNON express multiple markers of mesenchymal cells. In order to define relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data of embryonic brain (2) and found that the expression profile of CNON very closely matched one of the cell types in the embryonic brain. Finally, we evaluated differences between SCZ and control samples to assess usability and potential benefits of using single cell RNA-seq of CNON to study etiology of schizophrenia.

4.
PLoS One ; 14(9): e0217733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31479461

RESUMO

Human ether-à-go-go-related gene (Kv11.1, or hERG) is a potassium channel that conducts the delayed rectifier potassium current (IKr) during the repolarization phase of cardiac action potentials. hERG channels have a larger pore than other K+channels and can trap many unintended drugs, often resulting in acquired LQTS (aLQTS). R-roscovitine is a cyclin-dependent kinase (CDK) inhibitor that induces apoptosis in colorectal, breast, prostate, multiple myeloma, other cancer cell lines, and tumor xenografts, in micromolar concentrations. It is well tolerated in phase II clinical trials. R-roscovitine inhibits open hERG channels but does not become trapped in the pore. Two-electrode voltage clamp recordings from Xenopus oocytes expressing wild-type (WT) or hERG pore mutant channels (T623A, S624A, Y652A, F656A) demonstrated that compared to WT hERG, T623A, Y652A, and F656A inhibition by 200 µM R-roscovitine was ~ 48%, 29%, and 73% weaker, respectively. In contrast, S624A hERG was inhibited more potently than WT hERG, with a ~ 34% stronger inhibition. These findings were further supported by the IC50 values, which were increased for T623A, Y652A and F656A (by ~5.5, 2.75, and 42 fold respectively) and reduced 1.3 fold for the S624A mutant. Our data suggest that while T623, Y652, and F656 are critical for R-roscovitine-mediated inhibition, S624 may not be. Docking studies further support our findings. Thus, R-roscovitine's relatively unique features, coupled with its tolerance in clinical trials, could guide future drug screens.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/química , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Relação Dose-Resposta a Droga , Descoberta de Drogas , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA