Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Med Vet Entomol ; 36(4): 496-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35838413

RESUMO

Three Anopheles stephensi biotypes have historically been differentiated through variations in the mode numbers of egg ridges and adult spiracular indices. Anopheles stephensi odorant-binding protein 1 gene (AsteObp1) sequences in Iran and Afghanistan have been recently interpreted to suggest that the three biotypes are sibling species. AsteObp1 intron 1 sequences, mode numbers of egg ridges and spiracular indices of An. stephensi in Jaffna city in Sri Lanka were therefore investigated in field-collected mosquitoes and short-term laboratory colonies established from them. AsteObp1 intron 1 sequences revealed the region to be polymorphic with four unique sequences, ASJF1-4, present in both short-term laboratory colonies and field-collected An. stephensi. The spiracular index did not relate to the mode number of egg ridges in Jaffna An. stephensi. The results suggested that numbers of egg ridges, spiracular indices and AsteObp1 intron 1 sequences were not useful for differentiating An. stephensi biotypes in Jaffna. It is proposed that the observed differences between An. stephensi mosquitoes in Jaffna now result from normal population variance in the context of rapidly changing bionomics in India and northern Sri Lanka.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Íntrons , Sri Lanka , Malária/veterinária
2.
BMC Genomics ; 22(1): 253, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836668

RESUMO

BACKGROUND: Aedes aegypti mosquito, the principal global vector of arboviral diseases, lays eggs and undergoes larval and pupal development to become adult mosquitoes in fresh water (FW). It has recently been observed to develop in coastal brackish water (BW) habitats of up to 50% sea water, and such salinity tolerance shown to be an inheritable trait. Genomics of salinity tolerance in Ae. aegypti has not been previously studied, but it is of fundamental biological interest and important for controlling arboviral diseases in the context of rising sea levels increasing coastal ground water salinity. RESULTS: BW- and FW-Ae. aegypti were compared by RNA-seq analysis on the gut, anal papillae and rest of the carcass in fourth instar larvae (L4), proteomics of cuticles shed when L4 metamorphose into pupae, and transmission electron microscopy of cuticles in L4 and adults. Genes for specific cuticle proteins, signalling proteins, moulting hormone-related proteins, membrane transporters, enzymes involved in cuticle metabolism, and cytochrome P450 showed different mRNA levels in BW and FW L4 tissues. The salinity-tolerant Ae. aegypti were also characterized by altered L4 cuticle proteomics and changes in cuticle ultrastructure of L4 and adults. CONCLUSIONS: The findings provide new information on molecular and ultrastructural changes associated with salinity adaptation in FW mosquitoes. Changes in cuticles of larvae and adults of salinity-tolerant Ae. aegypti are expected to reduce the efficacy of insecticides used for controlling arboviral diseases. Expansion of coastal BW habitats and their neglect for control measures facilitates the spread of salinity-tolerant Ae. aegypti and genes for salinity tolerance. The transmission of arboviral diseases can therefore be amplified in multiple ways by salinity-tolerant Ae. aegypti and requires appropriate mitigating measures. The findings in Ae. aegypti have attendant implications for the development of salinity tolerance in other fresh water mosquito vectors and the diseases they transmit.


Assuntos
Aedes , Aedes/genética , Animais , Larva , Proteômica , Salinidade , Elevação do Nível do Mar , Transcriptoma
3.
Malar J ; 19(1): 417, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213479

RESUMO

BACKGROUND: Anopheles subpictus and Anopheles sundaicus are closely related species, each comprising several sibling species. Ambiguities exist in the classification of these two nominal species and the specific status of members of these species complexes. Identifying fixed molecular forms and mapping their spatial distribution will help in resolving the taxonomic ambiguities and understanding their relative epidemiological significance. METHODS: DNA sequencing of Internal Transcribed Spacer-2 (ITS2), 28S-rDNA (D1-to-D3 domains) and cytochrome oxidase-II (COII) of morphologically identified specimens of two nominal species, An. subpictus sensu lato (s.l.) and An. sundaicus s.l., collected from the Indian subcontinent, was performed and subjected to genetic distance and molecular phylogenetic analyses. RESULTS: Molecular characterization of mosquitoes for rDNA revealed the presence of two molecular forms of An. sundaicus s.l. and three molecular forms of An. subpictus s.l. (provisionally designated as Form A, B and C) in the Indian subcontinent. Phylogenetic analyses revealed two distinct clades: (i) subpictus clade, with a single molecular form of An. subpictus (Form A) prevalent in mainland India and Sri Lanka, and (ii) sundaicus clade, comprising of members of Sundaicus Complex, two molecular forms of An. subpictus s.l. (Form B and C), prevalent in coastal areas or islands in Indian subcontinent, and molecular forms of An. subpictus s.l. reported from Thailand and Indonesia. Based on the number of float-ridges on eggs, all An. subpictus molecular Form B were classified as Species B whereas majority (80%) of the molecular Form A were classified as sibling species C. Fixed intragenomic sequence variation in ITS2 with the presence of two haplotypes was found in molecular Form A throughout its distribution. CONCLUSION: A total of three molecular forms of An. subpictus s.l. and two molecular forms of An. sundaicus s.l. were recorded in the Indian subcontinent. Phylogenetically, two forms of An. subpictus s.l. (Form B and C) prevalent in coastal areas or islands in the Indian subcontinent and molecular forms reported from Southeast Asia are members of Sundaicus Complex. Molecular Form A of An. subpictus is distantly related to all other forms and deserve a distinct specific status.


Assuntos
Anopheles/genética , Mosquitos Vetores/genética , Animais , DNA Espaçador Ribossômico/análise , Complexo IV da Cadeia de Transporte de Elétrons/análise , Feminino , Índia , Malária , Filogenia , RNA Ribossômico 28S/análise , Especificidade da Espécie , Sri Lanka
4.
BMC Biol ; 15(1): 16, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28241828

RESUMO

BACKGROUND: The mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans. RESULTS: To understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants. CONCLUSIONS: We conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission.


Assuntos
Aedes/genética , Vetores de Doenças , Genômica , Adaptação Fisiológica/genética , África Ocidental , América , Migração Animal , Animais , Ásia , Sequência de Bases , Exoma/genética , Variação Genética , Genética Populacional , Genoma de Inseto , Humanos , Filogenia , Densidade Demográfica , Análise de Componente Principal
5.
J Vector Borne Dis ; 53(2): 91-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27353577

RESUMO

The major mosquito vectors of human diseases have co-evolved with humans over a long period of time. However, the rapid growth in human population and the associated expansion in agricultural activity and greater urbanisation have created ecological changes that have had a marked impact on biology of mosquito vectors. Adaptation of the vectors of malaria and important arbovial diseases over a much shorter time scale to the new types of preimaginal habitats recently created by human population growth and activity is highlighted here in the context of its potential for increasing disease transmission rates. Possible measures that can reduce the effects on the transmission of mosquito-borne diseases are also outlined.


Assuntos
Agricultura/métodos , Transmissão de Doença Infecciosa , Ecossistema , Mosquitos Vetores/crescimento & desenvolvimento , Humanos
6.
J Insect Sci ; 14: 97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25205254

RESUMO

Anopheles subpictus Grassi s.l. (Diptera: Culicidae) functions as a secondary malaria vector to Anopheles culicifacies Giles s.l. (Diptera: Culicidae) in Sri Lanka. The taxon A. subpictus is reported to exist as a species complex comprising four sibling species (A-D) that can be differentiated through polytene chromosome banding patterns and stage-specific morphometric traits in India. Based on the morphological characteristics described for the Indian Subpictus Complex, the presence of all four sibling species has been described in Sri Lanka. As sibling species show distinct bio-ecological characteristics that are important for devising appropriate vector control measures, a study was carried out in six districts in the dry zone of Sri Lanka. The results confirm the presence of all four sibling species, with species C predominating in inland areas and species B in coastal areas. Species C and D were indoor-resting and indoor-feeding, while species B was outdoor-resting with no significant preference for indoor- or outdoor-resting. Species B showed distinct morphological variation in the ornamentation of wings and palpi. Blood meal analysis revealed that species B, C, and D can feed on humans as well as cattle. The differential bio-ecological traits shown by the members of the Subpictus Complex are important for developing appropriate vector control measures in Sri Lanka.


Assuntos
Anopheles/classificação , Anopheles/genética , Comportamento Alimentar , Insetos Vetores , Animais , Anopheles/anatomia & histologia , Bovinos , Ecossistema , Humanos , Malária/transmissão , Especificidade da Espécie , Sri Lanka
7.
Parasit Vectors ; 17(1): 106, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439081

RESUMO

BACKGROUND: Although whole-genome sequencing (WGS) is the preferred genotyping method for most genomic analyses, limitations are often experienced when studying genomes characterized by a high percentage of repetitive elements, high linkage, and recombination deserts. The Asian tiger mosquito (Aedes albopictus), for example, has a genome comprising up to 72% repetitive elements, and therefore we set out to develop a single-nucleotide polymorphism (SNP) chip to be more cost-effective. Aedes albopictus is an invasive species originating from Southeast Asia that has recently spread around the world and is a vector for many human diseases. Developing an accessible genotyping platform is essential in advancing biological control methods and understanding the population dynamics of this pest species, with significant implications for public health. METHODS: We designed a SNP chip for Ae. albopictus (Aealbo chip) based on approximately 2.7 million SNPs identified using WGS data from 819 worldwide samples. We validated the chip using laboratory single-pair crosses, comparing technical replicates, and comparing genotypes of samples genotyped by WGS and the SNP chip. We then used the chip for a population genomic analysis of 237 samples from 28 sites in the native range to evaluate its usefulness in describing patterns of genomic variation and tracing the origins of invasions. RESULTS: Probes on the Aealbo chip targeted 175,396 SNPs in coding and non-coding regions across all three chromosomes, with a density of 102 SNPs per 1 Mb window, and at least one SNP in each of the 17,461 protein-coding genes. Overall, 70% of the probes captured the genetic variation. Segregation analysis found that 98% of the SNPs followed expectations of single-copy Mendelian genes. Comparisons with WGS indicated that sites with genotype disagreements were mostly heterozygotes at loci with WGS read depth < 20, while there was near complete agreement with WGS read depths > 20, indicating that the chip more accurately detects heterozygotes than low-coverage WGS. Sample sizes did not affect the accuracy of the SNP chip genotype calls. Ancestry analyses identified four to five genetic clusters in the native range with various levels of admixture. CONCLUSIONS: The Aealbo chip is highly accurate, is concordant with genotypes from WGS with high sequence coverage, and may be more accurate than low-coverage WGS.


Assuntos
Aedes , Mosquitos Vetores , Humanos , Animais , Genótipo , Mosquitos Vetores/genética , Heterozigoto , Aedes/genética
8.
Malar J ; 12: 304, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24001126

RESUMO

BACKGROUND: Anopheles subpictus sensu lato is a major malaria vector in South and Southeast Asia. Based initially on polytene chromosome inversion polymorphism, and subsequently on morphological characterization, four sibling species A-D were reported from India. The present study uses molecular methods to further characterize and identify sibling species in Sri Lanka. METHODS: Mosquitoes from Sri Lanka were morphologically identified to species and sequenced for the ribosomal internal transcribed spacer-2 (ITS2) and the mitochondrial cytochrome c oxidase subunit-I (COI) genes. These sequences, together with others from GenBank, were used to construct phylogenetic trees and parsimony haplotype networks and to test for genetic population structure. RESULTS: Both ITS2 and COI sequences revealed two divergent clades indicating that the Subpictus complex in Sri Lanka is composed of two genetically distinct species that correspond to species A and species B from India. Phylogenetic analysis showed that species A and species B do not form a monophyletic clade but instead share genetic similarity with Anopheles vagus and Anopheles sundaicus s.l., respectively. An allele specific identification method based on ITS2 variation was developed for the reliable identification of species A and B in Sri Lanka. CONCLUSION: Further multidisciplinary studies are needed to establish the species status of all chromosomal forms in the Subpictus complex. This study emphasizes the difficulties in using morphological characters for species identification in An. subpictus s.l. in Sri Lanka and demonstrates the utility of an allele specific identification method that can be used to characterize the differential bio-ecological traits of species A and B in Sri Lanka.


Assuntos
Anopheles/classificação , Anopheles/genética , Vetores de Doenças , Animais , Anopheles/anatomia & histologia , Análise por Conglomerados , Citocromos c/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Feminino , Genótipo , Haplótipos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Sri Lanka
9.
J Am Mosq Control Assoc ; 29(2): 168-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23923332

RESUMO

Larvae of Culex (Lutzia) Fuscanus were collected from ovitraps in a natural breeding site. Collected larvae were used to establish a self-mating colony, and larval progeny were then used to determine their predatory efficacy on larvae of 3 vector mosquito species, Aedes aegypti, Anopheles subpictus, and Cx. tritaeniorhynchus. Statistical analysis revealed that Cx. fuscanus showed greater feeding efficacy for Ae. aegypti than for Cx. tritaeniorhynchus and An. subpictus. The natural predatory role of this species can potentially be exploited for biological control of mosquito vectors in Sri Lanka.


Assuntos
Culex/fisiologia , Cadeia Alimentar , Animais , Culicidae/fisiologia , Feminino , Insetos Vetores/fisiologia , Masculino , Controle Biológico de Vetores , Comportamento Predatório , Especificidade da Espécie , Sri Lanka
10.
Sci Rep ; 13(1): 8160, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208485

RESUMO

Aedes aegypti, the principal global vector of arboviral diseases and previously considered to oviposit and undergo preimaginal development only in fresh water, has recently been shown to be capable of developing in coastal brackish water containing up to 15 g/L salt. We investigated surface changes in eggs and larval cuticles by atomic force and scanning electron microscopy, and larval susceptibility to two widely-used larvicides, temephos and Bacillus thuringiensis, in brackish water-adapted Ae. aegypti. Compared to freshwater forms, salinity-tolerant Ae. aegypti had rougher and less elastic egg surfaces, eggs that hatched better in brackish water, rougher larval cuticle surfaces, and larvae more resistant to the organophosphate insecticide temephos. Larval cuticle and egg surface changes in salinity-tolerant Ae. aegypti are proposed to respectively contribute to the increased temephos resistance and egg hatchability in brackish water. The findings highlight the importance of extending Aedes vector larval source reduction efforts to brackish water habitats and monitoring the efficacy of larvicides in coastal areas worldwide.


Assuntos
Aedes , Inseticidas , Animais , Temefós , Larva , Salinidade , Mosquitos Vetores , Inseticidas/farmacologia , Resistência a Inseticidas
11.
BMC Infect Dis ; 11: 18, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21241521

RESUMO

BACKGROUND: Vector-borne infectious diseases are a significant cause of human and animal mortality and morbidity. Modeling studies predict that changes in climate that accompany global warming will alter the transmission risk of many vector-borne infectious diseases in different parts of the world. Global warming will also raise sea levels, which will lead to an increase in saline and brackish water bodies in coastal areas. The potential impact of rising sea levels, as opposed to climate change, on the prevalence of vector-borne infectious diseases has hitherto been unrecognised. PRESENTATION OF THE HYPOTHESIS: Mosquito species possessing salinity-tolerant larvae and pupae, and capable of transmitting arboviruses and parasites are found in many parts of the world. An expansion of brackish and saline water bodies in coastal areas, associated with rising sea levels, can increase densities of salinity-tolerant vector mosquitoes and lead to the adaptation of freshwater vectors to breed in brackish and saline waters. The breeding of non-mosquito vectors may also be influenced by salinity changes in coastal habitats. Higher vector densities can increase transmission of vector-borne infectious diseases in coastal localities, which can then spread to other areas. TESTING THE HYPOTHESIS: The demonstration of increases in vector populations and disease prevalence that is related to an expansion of brackish/saline water bodies in coastal areas will provide the necessary supportive evidence. However the implementation of specific vector and disease control measures to counter the threat will confound the expected findings. IMPLICATIONS OF THE HYPOTHESIS: Rising sea levels can act synergistically with climate change and then interact in a complex manner with other environmental and socio-economic factors to generate a greater potential for the transmission of vector-borne infectious diseases. The resulting health impacts are likely to be particularly significant in resource-poor countries in the tropics and semi-tropics. Some measures to meet this threat are outlined.


Assuntos
Doenças Transmissíveis/transmissão , Ecossistema , Insetos Vetores/fisiologia , Tolerância ao Sal , Animais , Mudança Climática , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Água Doce/parasitologia , Humanos , Insetos Vetores/parasitologia , Insetos Vetores/virologia , Água do Mar/parasitologia
12.
Parasit Vectors ; 14(1): 162, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736702

RESUMO

BACKGROUND: The larval bionomics of Aedes across the Jaffna peninsula in northern Sri Lanka was investigated to obtain information needed for developing more effective larval source reduction measures to control endemic arboviral diseases. METHODS: The habitats of preimaginal stages of Aedes mosquitoes were surveyed, and ovitrap collections were carried out in densely populated areas of the Jaffna peninsula. Aedes larval productivities were analysed against habitat characteristics, rainfall and dengue incidence. Adults emerging from collected larvae were tested for dengue virus (DENV). RESULTS: Only Aedes aegypti, Ae. albopictus and Ae. vittatus were identified in the field habitat collections and ovitraps. Aedes aegypti was the predominant species in both the field habitat and ovitrap collections, followed by Ae. albopictus and small numbers of Ae. vittatus. Tires and open drains were the preferred field habitats for Ae. aegypti, although larval productivity was higher in discarded plastic containers. The three Aedes species differed in field habitat preferences. Concomitant presence of the three Aedes species was observed in the field habitats and ovitraps. Larval productivities were inversely correlated with the salinity of the field habitat. Rainfall in the preceding month significantly correlated with larval productivity in the field habitats. DENV serotype 2 was detected in Ae. aegypti collected from ovitraps in the city of Jaffna. High Breteau, House and Container indices of 5.1, 5.1 and 7.9%, respectively, were observed in the field habitat surveys and ovitrap indices of up to 92% were found in Jaffna city. CONCLUSIONS: Aedes larval indices in populated areas of the peninsula showed a high potential for dengue epidemics. Unacceptable littering practices, failure to implement existing dengue control guidelines, vertical transmission of DENV in vector mosquitoes and preimaginal development in brackish water and open surface drains, as well as in domestic wells that provide potable water, are serious constraints to the current Aedes larval source reduction methods used to control dengue in the Jaffna peninsula. Similar shortcomings in arboviral disease control are likely present in other resource-constrained tropical coastal zones worldwide.


Assuntos
Aedes/fisiologia , Dengue/prevenção & controle , Dengue/transmissão , Ecologia/métodos , Larva/crescimento & desenvolvimento , Mosquitos Vetores/virologia , Animais , Dengue/epidemiologia , Ecossistema , Feminino , Salinidade , Sri Lanka/epidemiologia
13.
Diagnostics (Basel) ; 11(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829432

RESUMO

Dengue is a significant health concern in Sri Lanka, but diagnosis of the infecting dengue virus (DENV) serotype has hitherto been largely restricted to the Colombo district in the western province. Salinity tolerant Aedes vectors are present in the island's northern Jaffna peninsula, which is undergoing rapid groundwater salinization. Virus serotypes were determined by RT-qPCR in 107 and 112 patients diagnosed by NS1 antigen positivity from the Jaffna district in 2018 and 2019, respectively, and related to clinical characteristics. DENV1 and DENV2 were the most common serotypes in both years. Infections with multiple serotypes were not detected. DENV1 was significantly more prevalent in 2019 than 2018, while DENV3 was significantly more prevalent in 2018 than 2019 among the Jaffna patients. Limited genomic sequencing identified DENV1 genotype-I and DENV3 genotype-I in Jaffna patients in 2018. Dengue was more prevalent in working age persons and males among the serotyped Jaffna patients. DENV1 and DENV2 were the predominant serotypes in 2019 in the Colombo district. However, DENV1 and DENV3 were significantly more prevalent in Colombo compared with Jaffna in 2019. The differences in the prevalence of DENV1 and DENV3 between the Jaffna and Colombo districts in 2019 have implications for dengue epidemiology and vaccination. Salinity-tolerant Aedes vector strains, widespread in the Jaffna peninsula, may have contributed to differences in serotype prevalence compared with the Colombo district in 2019. Significant associations were not identified between virus serotypes and clinical characteristics among Jaffna patients.

14.
Malar J ; 9: 106, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20409313

RESUMO

BACKGROUND: Anopheles culicifacies is the major vector of both falciparum and vivax malaria in Sri Lanka, while Anopheles subpictus and certain other species function as secondary vectors. In Sri Lanka, An. culicifacies is present as a species complex consisting of species B and E, while An. subpictus exists as a complex of species A-D. The freshwater breeding habit of An. culicifacies is well established. In order to further characterize the breeding sites of the major malaria vectors in Sri Lanka, a limited larval survey was carried out at a site in the Eastern province that was affected by the 2004 Asian tsunami. METHODS: Anopheline larvae were collected fortnightly for six months from a brackish water body near Batticaloa town using dippers. Collected larvae were reared in the laboratory and the emerged adults were identified using standard keys. Sibling species status was established based on Y-chromosome morphology for An. culicifacies larvae and morphometric characteristics for An. subpictus larvae and adults. Salinity, dissolved oxygen and pH were determined at the larval collection site. RESULTS: During a six month study covering dry and wet seasons, a total of 935 anopheline larvae were collected from this site that had salinity levels up to 4 parts per thousand at different times. Among the emerged adult mosquitoes, 661 were identified as An. culicifacies s.l. and 58 as An. subpictus s.l. Metaphase karyotyping of male larvae showed the presence of species E of the Culicifacies complex, and adult morphometric analysis the presence of species B of the Subpictus complex. Both species were able to breed in water with salinity levels up to 4 ppt. CONCLUSIONS: The study demonstrates the ability of An. culicifacies species E, the major vector of falciparum and vivax malaria in Sri Lanka, to oviposit and breed in brackish water. The sibling species B in the An. subpictus complex, a well-known salt water breeder and a secondary malaria vector in the country, was also detected at the same site. Since global warming and the rise in sea levels will further increase of inland brackish water bodies, the findings have significant implications for the control of malaria in Sri Lanka and elsewhere.


Assuntos
Anopheles/fisiologia , Cruzamento , Malária/prevenção & controle , Animais , Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Meio Ambiente , Insetos Vetores , Larva , Malária/transmissão , Sri Lanka
15.
Malar J ; 9: 343, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21114832

RESUMO

BACKGROUND: Anopheles subpictus sensu lato, a widespread malaria vector in Asia, is reportedly composed of four sibling species A - D. Mosquitoes morphologically identified as belonging to the Subpictus complex were collected from different locations near the east coast of Sri Lanka, and specific ribosomal DNA sequences determined to validate their taxonomic status. METHODS: Anopheles subpictus s.l. larvae and blood-fed adults were collected from different locations in the Eastern province and their sibling species status was determined based on published morphological characteristics. DNA sequences of the D3 domain of 28 S ribosomal DNA (rDNA) and the internal transcribed spacer -2 (ITS-2) of mosquitoes morphologically identified as An. subpictus sibling species A, B, C and D were determined. RESULTS: Phylogenetic analysis based on D3 domain of rDNA resulted in two clades: one clade with mosquitoes identified as An. subpictus species A, C, D and some mosquitoes identified as species B, and another clade with a majority of mosquitoes identified as species B with D3 sequences that were identical to Anopheles sundaicus cytotype D. Analysis of ITS-2 sequences confirmed a close relationship between a majority of mosquitoes identified as An. subpictus B with members of the An. sundaicus complex and others identified as An. subpictus B with An. subpictus s.l. CONCLUSIONS: The study suggests that published morphological characteristics are not specific enough to identify some members of the Subpictus complex, particularly species B. The sequences of the ITS-2 and D3 domain of rDNA suggest that a majority that were identified morphologically as An. subpictus species B in the east coast of Sri Lanka, and some identified elsewhere in SE Asia as An. subpictus s.l., are in fact members of the Sundaicus complex based on genetic similarity to An. sundaicus s.l. In view of the well-known ability of An. sundaicus s.l. to breed in brackish and fresh water and its proven ability to transmit malaria in coastal areas of many Southeast Asian countries, the present findings have significant implications for malaria control in Sri Lanka and neighbouring countries.


Assuntos
Anopheles/classificação , Anopheles/genética , Vetores de Doenças , Animais , Anopheles/anatomia & histologia , Sequência de Bases , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genótipo , Humanos , Malária/transmissão , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sri Lanka
16.
Parasit Vectors ; 13(1): 156, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228675

RESUMO

BACKGROUND: Malaria was eliminated from Sri Lanka in 2013. However, the influx of infected travelers and the presence of potent anopheline vectors can re-initiate transmission in Jaffna city, which is separated by a narrow strait from the malaria-endemic Indian state of Tamil Nadu. METHODS: Anopheline larvae were collected from different habitats in Jaffna city and the susceptibility of emergent adults to DDT, malathion and deltamethrin investigated. RESULTS: Anopheline larvae were found in wells, surface-exposed drains, ponds, water puddles and water storage tanks, with many containing polluted, alkaline and brackish water. Anopheles culicifacies, An. subpictus, An. stephensi and An. varuna were identified in the collections. Adults of the four anopheline species were resistant to DDT. Anopheles subpictus and An. stephensi were resistant while An. culicifacies and An. varuna were possibly resistant to deltamethrin. Anopheles stephensi was resistant, An. subpictus possibly resistant while An. varuna and An. culicifacies were susceptible to malathion. DNA sequencing showed a L1014F (TTA to TTC) mutation in the IIS6 transmembrane segment of the voltage-gated sodium channel protein in deltamethrin-resistant An. subpictus-a mutation previously observed in India but not Sri Lanka. CONCLUSION: Anopheles subpictus in Jaffna, like An. stephensi, may have recently originated in coastal Tamil Nadu. Besides infected overseas travelers, wind- and boat-borne carriage of Plasmodium-infected anophelines across the Palk Strait can potentially reintroduce malaria transmission to Jaffna city. Adaptation to diverse larval habitats and resistance to common insecticides in anophelines are identified as potential problems for vector control should this happen.


Assuntos
Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , DDT/farmacologia , Ecologia , Índia , Larva/efeitos dos fármacos , Larva/genética , Malation , Nitrilas , Piretrinas , Recidiva , Análise de Sequência , Análise de Sequência de DNA , Sri Lanka
17.
Parasit Vectors ; 12(1): 13, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616643

RESUMO

BACKGROUND: Sri Lanka has been malaria-free since 2013 but re-introduction of malaria transmission by infected overseas travelers is possible due to a prevalence of potent malaria vectors. Knowledge of the insecticide resistance status among Anopheles vectors is important if vector control has to be reintroduced in the island. The present study investigated the insecticide susceptibility levels and resistance mechanisms of Anopheles sundaicus (sensu lato) (previously classified as Anopheles subpictus species B) an important malaria vector in the Jaffna Peninsula and it surroundings in northern Sri Lanka after indoor residual spraying of insecticides was terminated in 2013. RESULTS: Species-specific PCR assays identified An. sundaicus (s.l.) in four locations in the Jaffna and adjacent Kilinochchi districts. Bioassays confirmed that An. sundaicus (s.l.) collected in Kilinochchi were completely susceptible to 0.05% deltamethrin and 5% malathion and resistant to 4% dichlorodiphenyltrichloroethane (DDT), whereas those from Jaffna were relatively susceptible to all three insecticides. Kilinochchi populations of An. sundaicus (s.l.) showed significantly higher glutathione S-transferase activity than population from Jaffna. However, Jaffna An. sundaicus (s.l.) had significantly higher Propoxur-resistant acetylcholinesterase activity. Activities of non-specific esterases and monooxygenases were not significantly elevated in An. sundaicus (s.l.) collected in both districts. CONCLUSIONS: The susceptibility to malathion and deltamethrin in An. sundaicus (s.l.) suggests that they can be still used for controlling this potential malaria vector in the Jaffna Peninsula and adjacent areas. Continuing country-wide studies on other malaria vectors and their insecticide susceptibilities are important in this regard.


Assuntos
Anopheles/enzimologia , Inativação Metabólica , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/transmissão , Mosquitos Vetores/enzimologia , Animais , Anopheles/efeitos dos fármacos , DDT/farmacologia , Malation/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia , Sri Lanka
18.
Parasit Vectors ; 12(1): 337, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287014

RESUMO

BACKGROUND: Aedes aegypti were found developing in the water in open public drains (drain-water, DW) in Jaffna city in northern Sri Lanka, a location where the arboviral diseases dengue and chikungunya are endemic. METHODS: Susceptibilities to the common insecticides dichlorodiphenyltrichloroethane (DDT), malathion, propoxur, permethrin and deltamethrin and activities of the insecticide-detoxifying enzymes carboxylesterase (EST), glutathione S-transferase (GST) and monooxygenase (MO) were compared in adult Ae. aegypti developing in DW and fresh water (FW). RESULTS: DW Ae. aegypti were resistant to the pyrethroids deltamethrin and permethrin, while FW Ae. aegypti were susceptible to deltamethrin but possibly resistant to permethrin. Both DW and FW Ae. aegypti were resistant to DDT, malathion and propoxur. Greater pyrethroid resistance in DW Ae. aegypti was consistent with higher GST and MO activities. CONCLUSIONS: The results demonstrate the potential for insecticide resistance developing in Ae. aegypti adapted to DW. Urbanization in arboviral disease-endemic countries is characterized by a proliferation of open water drains and therefore the findings identify a potential new challenge to global health.


Assuntos
Aedes/enzimologia , Arbovírus/fisiologia , Resistência a Inseticidas , Mosquitos Vetores/enzimologia , Águas Residuárias/parasitologia , Aedes/efeitos dos fármacos , Aedes/virologia , Animais , Carboxilesterase/metabolismo , DDT/farmacologia , Feminino , Saúde Global , Glutationa Transferase/metabolismo , Humanos , Inseticidas/farmacologia , Malation/farmacologia , Masculino , Camundongos , Oxigenases de Função Mista/metabolismo , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/virologia , Nitrilas/farmacologia , Permetrina/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia
19.
Front Public Health ; 7: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923705

RESUMO

The malaria vector Anopheles stephensi is found in wide tracts of Asia and the Middle East. The discovery of its presence for the first time in the island of Sri Lanka in 2017, poses a threat of malaria resurgence in a country which had eliminated the disease in 2013. Morphological and genetic characterization showed that the efficient Indian urban vector form An. stephensi sensu stricto or type form, has recently expanded its range to Jaffna and Mannar in northern Sri Lanka that are in proximity to Tamil Nadu state in South India. Comparison of the DNA sequences of the cytochrome oxidase subunit 1 gene in An. stephensi in Jaffna and Mannar in Sri Lanka and Tamil Nadu and Puducherry states in South India showed that a haplotype that is due to a sequence change from valine to methionine in the cytochrome oxidase subunit 1 present in the Jaffna and Mannar populations has not been documented so far in Tamil Nadu/Puducherry populations. The Jaffna An. stephensi were closer to Tamil Nadu/Puducherry populations and differed significantly from the Mannar populations. The genetic findings cannot differentiate between separate arrivals of the Jaffna and Mannar An. stephensi from Tamil Nadu or a single arrival and dispersion to the two locations accompanied by micro-evolutionary changes. Anopheles stephensi was observed to undergo preimaginal development in fresh and brackish water domestic wells and over ground cement water storage tanks in the coastal urban environment of Jaffna and Mannar. Anopheles stephensi in Jaffna was resistant to the common insecticides deltamethrin, dichlorodiphenyltrichloroethane and Malathion. Its preimaginal development in wells and water tanks was susceptible to predation by the larvivorous guppy fish Poecilia reticulata. The arrival, establishment, and spread of An. stephensi in northern Sri Lanka are analyzed in relation to anthropogenic factors that favor its range expansion. The implications of the findings for global public health challenges posed by malaria and other mosquito-borne diseases are discussed.

20.
Parasit Vectors ; 11(1): 3, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298698

RESUMO

BACKGROUND: Anopheles stephensi, the major vector of urban malaria in India, was recently detected for the first time in Sri Lanka in Mannar Island on the northwestern coast. Since there are different biotypes of An. stephensi with different vector capacities in India, a study was undertaken to further characterise the genotype and biotype of An. stephensi in Mannar Island. METHODS: Mosquito larvae were collected in Pesalai village in Mannar and maintained in the insectary until adulthood. Adult An. stephensi were identified morphologically using published keys. Identified adult An. stephensi were molecularly characterized using two mitochondrial (cox1 and cytb) and one nuclear (ITS2) markers. Their PCR-amplified target fragments were sequenced and checked against available sequences in GenBank for phylogenetic analysis. The average spiracular and thoracic lengths and the spiracular index were determined to identify biotypes based on corresponding indices for Indian An. stephensi. RESULTS: All DNA sequences for the Mannar samples matched reported sequences for An. stephensi from the Middle East and India. However, a single nucleotide variation in the cox1 sequence suggested an amino acid change from valine to methionine in the cox1 protein in Sri Lankan An. stephensi. Morphological data was consistent with the presence of the Indian urban vector An. stephensi type-form in Sri Lanka. CONCLUSIONS: The present study provides a more detailed molecular characterization of An. stephensi and suggests the presence of the type-form of the vector for the first time in Sri Lanka. The single mutation in the cox1 gene may be indicative of a founder effect causing the initial diversification of An. stephensi in Sri Lanka from the Indian form. The distribution of the potent urban vector An. stephensi type-form needs to be established by studies throughout the island as its spread adds to the challenge of maintaining the country's malaria-free status.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Genética Populacional , Genótipo , Fenótipo , Estruturas Animais/anatomia & histologia , Animais , Anopheles/anatomia & histologia , Anopheles/genética , Citocromos b/genética , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Entomologia/métodos , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sri Lanka
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA