Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Annu Rev Cell Dev Biol ; 28: 215-50, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905956

RESUMO

The recent rapid accumulation of knowledge on the dynamics and structure of the plasma membrane has prompted major modifications of the textbook fluid-mosaic model. However, because the new data have been obtained in a variety of research contexts using various biological paradigms, the impact of the critical conceptual modifications on biomedical research and development has been limited. In this review, we try to synthesize our current biological, chemical, and physical knowledge about the plasma membrane to provide new fundamental organizing principles of this structure that underlie every molecular mechanism that realizes its functions. Special attention is paid to signal transduction function and the dynamic aspect of the organizing principles. We propose that the cooperative action of the hierarchical three-tiered mesoscale (2-300 nm) domains--actin-membrane-skeleton induced compartments (40-300 nm), raft domains (2-20 nm), and dynamic protein complex domains (3-10 nm)--is critical for membrane function and distinguishes the plasma membrane from a classical Singer-Nicolson-type model.


Assuntos
Microdomínios da Membrana/metabolismo , Modelos Biológicos , Transdução de Sinais , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Microdomínios da Membrana/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Estrutura Quaternária de Proteína
2.
J Am Chem Soc ; 146(32): 22193-22207, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38963258

RESUMO

Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions. In this study, we devised a HaloTag-based technique for glycan manipulation, which enables the introduction of chemically synthesized glycans onto a specific protein (protein of interest, POI) and concurrently incorporates fluorescent units to attach homogeneous, well-defined glycans to the fluorescence-labeled POIs. Leveraging this HaloTag-based glycan-display system, we investigated the influence of the interactions between Gal-3 and various N-glycans on protein dynamics. Our analyses revealed that glycosylation modulates the lateral diffusion of the membrane proteins in a structure-dependent manner through interaction with Gal-3, particularly in the context of the Gal-3-induced formation of the glycan network (galectin lattice). Furthermore, N-glycan attachment was also revealed to have a significant impact on the extracellular vesicle-loading of membrane proteins. Notably, our POI-specific glycan introduction does not disrupt intact glycan structures, thereby enabling a functional analysis of glycans in the presence of native glycan networks. This approach complements conventional glycan-editing methods and provides a means for uncovering the molecular underpinnings of glycan functions on the cell surface.


Assuntos
Vesículas Extracelulares , Galectinas , Proteínas de Membrana , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicosilação , Galectinas/metabolismo , Galectinas/química , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Humanos , Difusão , Membrana Celular/metabolismo , Membrana Celular/química
3.
Glycoconj J ; 40(3): 305-314, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37133616

RESUMO

Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.


Assuntos
Corantes Fluorescentes , Glicoesfingolipídeos , Glicoesfingolipídeos/metabolismo , Corantes Fluorescentes/química , Imagem Individual de Molécula , Gangliosídeos/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo
4.
Glycoconj J ; 40(2): 247-257, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36701103

RESUMO

Ganglioside GD2 is associated with the proliferation and migration of breast cancer cells. However, the precise role of GD2 is unclear because its tendency to form dynamic and transient domains in cell plasma membranes (PMs), called lipid rafts, makes it difficult to observe. Previously, we developed fluorescent analogs of gangliosides (e.g., GM3 and GM1), which enabled the observation of lipid raft formation for the first time using single-molecule imaging. In this report, we describe the first chemical synthesis of a fluorescent ganglioside, GD2. A biophysical analysis of the synthesized analog revealed its raft-philic character, suggesting its potential to aid single-molecule imaging-based investigations into raft-associated interactions.


Assuntos
Gangliosídeos , Imagem Individual de Molécula , Gangliosídeos/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo
5.
Traffic ; 21(1): 106-137, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760668

RESUMO

Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.


Assuntos
Colesterol , Microdomínios da Membrana , Membrana Celular , Lipídeos , Lipossomas Unilamelares
6.
Chemistry ; 28(8): e202104421, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34984747

RESUMO

Aqueous self-assembly of short peptides has attracted growing attention for the construction of supramolecular materials for various bioapplications. Herein, we describe how the thermolysin-assisted biocatalytic construction of a dipeptide hydrazide from an N-protected amino acid and an amino acid hydrazide leads to the formation of thermally stable supramolecular hydrogels. In addition, we demonstrate the post-assembly modification of the supramolecular architectures constructed in situ tethering hydrazide groups as a chemical handle by means of fluorescence imaging.


Assuntos
Dipeptídeos , Nanoestruturas , Hidrazinas , Hidrogéis , Peptídeos
7.
Langmuir ; 38(48): 14695-14703, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36421004

RESUMO

Exosomes are small extracellular vesicles (sEVs) involved in distal cell-cell communication and cancer migration by transferring functional cargo molecules. Membrane domains similar to lipid rafts are assumed to occur in exosome membranes and are involved in interactions with target cells. However, the bilayer membrane properties of these small vesicles have not been fully investigated. Therefore, we examined the fluidity, lateral domain separation, and transbilayer asymmetry of exosome membranes using fluorescence spectroscopy. Although there were some differences between the exosomes, TMA-DPH anisotropy showing moderate lipid chain order indicated that ordered phases comprised a significant proportion of exosome membranes. Selective TEMPO quenching of the TMA-DPH fluorescence in the liquid-disordered phase indicated that 40-50% of the exosome membrane area belonged to the ordered phase based on a phase-separated model. Furthermore, NBD-PC in the outer leaflet showed longer fluorescence lifetimes than those in the inner leaflets. Therefore, the exosome membranes maintained transbilayer asymmetry with a topology similar to that of the plasma membranes. In addition, the lateral and transbilayer orders of exosome membranes obtained from different cell lines varied, probably depending on the different membrane lipid components and compositions partially derived from donor cells. As these higher membrane orders and asymmetric topologies are similar to those of cell membranes with lipid rafts, raft-like functional domains are possibly enriched on exosome membranes. These domains likely play key roles in the biological functions and cellular uptake of exosomes by facilitating selective membrane interactions with target organs.


Assuntos
Exossomos , Fluidez de Membrana , Espectrometria de Fluorescência , Bicamadas Lipídicas/química , Exossomos/metabolismo , Membrana Celular/metabolismo
8.
Nat Chem Biol ; 14(5): 497-506, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610485

RESUMO

Single-fluorescent-molecule imaging tracking (SMT) is becoming an important tool to study living cells. However, photobleaching and photoblinking (hereafter referred to as photobleaching/photoblinking) of the probe molecules strongly hamper SMT studies of living cells, making it difficult to observe in vivo molecular events and to evaluate their lifetimes (e.g., off rates). The methods used to suppress photobleaching/photoblinking in vitro are difficult to apply to living cells because of their toxicities. Here using 13 organic fluorophores we found that, by combining low concentrations of dissolved oxygen with a reducing-plus-oxidizing system, photobleaching/photoblinking could be strongly suppressed with only minor effects on cells, which enabled SMT for as long as 12,000 frames (~7 min at video rate, as compared to the general 10-s-order durations) with ~22-nm single-molecule localization precisions. SMT of integrins revealed that they underwent temporary (<80-s) immobilizations within the focal adhesion region, which were responsible for the mechanical linkage of the actin cytoskeleton to the extracellular matrix.


Assuntos
Corantes Fluorescentes/química , Integrinas/metabolismo , Microscopia de Fluorescência , Citoesqueleto de Actina/metabolismo , Animais , Células CHO , Adesão Celular , Cricetulus , Matriz Extracelular/metabolismo , Células HeLa , Humanos , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Camundongos , Células NIH 3T3 , Oxirredução , Oxigênio/química , Fotodegradação , Gravação em Vídeo
9.
J Org Chem ; 85(24): 15998-16013, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32951428

RESUMO

b-Series gangliosides are abundant in central nervous tissues and are involved in important nerve processes. However, their functions are complicated because of their properties of forming dynamic domains in cell plasma membranes (PMs), called lipid rafts. In this study, we aim to develop fluorescently labeled b-series gangliosides that are useful for single-molecule imaging. The chemical synthesis of fluorescent GD3 and GQ1b was achieved using sialylation and ganglioside synthetic methods previously developed by our group. Furthermore, biophysical evaluations demonstrated that synthesized fluorescent GD3 and GQ1b behaved as raft molecules on cell PMs, suggesting their applicability to the study of raft-associated interactions.


Assuntos
Gangliosídeos , Microdomínios da Membrana , Membrana Celular
10.
Chemistry ; 25(51): 11955-11962, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31268200

RESUMO

Aqueous hybrid soft nanomaterials consisting of plural supramolecular architectures with a high degree of segregation (orthogonal coexistence) and precise hierarchy at the nano- and microscales, which are reminiscent of complex biomolecular systems, have attracted increasing attention. Remarkable progress has been witnessed in the construction of DNA nanostructures obtained by rational sequence design and supramolecular nanostructures of peptide derivatives through self-assembly under aqueous conditions. However, orthogonal self-assembly of DNA nanostructures and supramolecular nanostructures of peptide derivatives in a single medium has not yet been explored in detail. In this study, DNA microspheres, which can be obtained from three single-stranded DNAs, and three different supramolecular nanostructures (helical nanofibers, straight nanoribbons, and flowerlike microaggregates) of semi-artificial glycopeptides were simultaneously constructed in a single medium by a simple thermal annealing process, which gives rise to hybrid soft nanomaterials. Fluorescence imaging with selective staining of each supramolecular nanostructure uncovered the orthogonal coexistence of these structures with only marginal impact on their morphology. Additionally, the biostimuli-responsive degradation propensity of each supramolecular architecture is retained, and this may allow the construction of active soft nanomaterials exhibiting intelligent biofunctions.


Assuntos
DNA/química , Glicopeptídeos/química , Nanoestruturas/química , Peptídeos/química , Microesferas , Nanofibras/química , Água
11.
Int J Mol Sci ; 20(24)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817926

RESUMO

Glycosphingolipids (GSLs), such as the globo-series GSLs stage-specific embryonic antigen 3 (SSEA-3), SSEA-4, and Globo-H, are specifically expressed on pluripotent stem cells and cancer cells, and are known to be associated with various biological processes such as cell recognition, cell adhesion, and signal transduction. However, the behavior and biological roles of these GSLs are still unclear. In our previous study, we observed the interactions between the lipid raft and GSLs in real-time using single-molecule imaging, where we successfully synthesized various fluorescent analogs of GSLs (e.g., GM1 and GM3). Here, we have developed fluorescent analogs of SSEA-3, SSEA-4, and Globo-H using chemical synthesis. The biophysical properties of these analogs as raft markers were examined by partitioning giant plasma membrane vesicles from RBL-2H3 cells into detergent-resistant membrane fractions and liquid-ordered/liquid-disordered phases. The results indicated that the analogs were equivalent to native-type GSLs. The analogs could be used to observe the behavior of globo-series GSLs for detailing the structure and biological roles of lipid rafts and GSL-enriched nanodomains during cell differentiation and cell malignancy.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Membrana Celular/metabolismo , Glicoesfingolipídeos/metabolismo , Leucemia Basofílica Aguda/metabolismo , Microdomínios da Membrana/metabolismo , Antígenos Embrionários Estágio-Específicos/metabolismo , Animais , Comunicação Celular , Diferenciação Celular , Leucemia Basofílica Aguda/patologia , Estrutura Molecular , Ratos , Transdução de Sinais , Células Tumorais Cultivadas
12.
Nat Chem Biol ; 12(6): 402-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043189

RESUMO

Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.


Assuntos
Antígenos CD59/química , Antígenos CD59/metabolismo , Gangliosídeos/química , Gangliosídeos/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Microdomínios da Membrana/metabolismo , Antígenos CD59/análise , Difusão , Fluorescência , Gangliosídeos/análise , Humanos , Microdomínios da Membrana/química , Conformação Molecular , Ligação Proteica , Fatores de Tempo
13.
Adv Exp Med Biol ; 1104: 41-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30484243

RESUMO

Ganglioside s are involved in a variety of physiological roles and particularly in the formation and function of lipid rafts in cell membranes. However, the dynamic behaviors of gangliosides have not been investigated in living cells owing to the lack of fluorescent probes that behave like their parental molecules. This has recently been resolved by developing new fluorescent ganglioside analogues that act similarly to their parental molecules, synthesized by only chemical methods. We performed single fluorescent-molecule imaging and revealed that ganglioside probes dynamically enter and exit rafts containing CD59, a glycosylphosphatidylinositol (GPI)-anchored protein, both before and after stimulation. The residency time of our ganglioside probes in CD59 oligomers was 48 ms after stimulation. The residency times in CD59 homodimer and monomer rafts were 40 and 12 ms, respectively. These results reveal the first direct evidence that GPI-anchored receptors and gangliosides interact in a cholesterol-dependent manner. Furthermore, they demonstrate that gangliosides continually move in and out of rafts that contain CD59 in an extremely dynamic manner and at a much higher frequency than expected. In this chapter, we review methods for the development and single-molecule imaging of new fluorescent ganglioside analogues and discuss how raft domains are formed, both before and after receptor engagement.


Assuntos
Antígenos CD59/química , Gangliosídeos/química , Glicosilfosfatidilinositóis/química , Microdomínios da Membrana/química , Humanos
14.
Biochim Biophys Acta Gen Subj ; 1861(10): 2494-2506, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28734966

RESUMO

Gangliosides are involved in a variety of biological roles and are a component of lipid rafts found in cell plasma membranes (PMs). Gangliosides are especially abundant in neuronal PMs and are essential to their physiological functions. However, the dynamic behaviors of gangliosides have not been investigated in living cells due to a lack of fluorescent probes that behave like their parental molecules. We have recently developed, using an entirely chemical method, four new ganglioside probes (GM1, GM2, GM3, and GD1b) that act similarly to their parental molecules in terms of raft partitioning and binding affinity. Using single fluorescent-molecule imaging, we have found that ganglioside probes dynamically enter and leave rafts featuring CD59, a GPI-anchored protein. This occurs both before and after stimulation. The residency time of our ganglioside probes in rafts with CD59 oligomers was 48ms, after stimulation. The residency times in CD59 homodimer and monomer rafts were 40ms and 12ms, respectively. In this review, we introduce an entirely chemical-based ganglioside analog synthesis method and describe its application in single-molecule imaging and for the study of the dynamic behavior of gangliosides in cell PMs. Finally, we discuss how raft domains are formed, both before and after receptor engagement. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.


Assuntos
Gangliosídeo G(M1)/síntese química , Gangliosídeo G(M2)/síntese química , Gangliosídeo G(M3)/síntese química , Gangliosídeos/síntese química , Microdomínios da Membrana/metabolismo , Sondas Moleculares/síntese química , Antígenos CD59/química , Antígenos CD59/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Gangliosídeo G(M1)/análogos & derivados , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M2)/análogos & derivados , Gangliosídeo G(M2)/metabolismo , Gangliosídeo G(M3)/análogos & derivados , Gangliosídeo G(M3)/metabolismo , Gangliosídeos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microdomínios da Membrana/ultraestrutura , Sondas Moleculares/metabolismo , Imagem Individual de Molécula
15.
Traffic ; 15(6): 583-612, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24506328

RESUMO

Cholesterol distribution and dynamics in the plasma membrane (PM) are poorly understood. The recent development of Bodipy488-conjugated cholesterol molecule (Bdp-Chol) allowed us to study cholesterol behavior in the PM, using single fluorescent-molecule imaging. Surprisingly, in the intact PM, Bdp-Chol diffused at the fastest rate ever found for any molecules in the PM, with a median diffusion coefficient (D) of 3.4 µm²/second, which was ∼10 times greater than that of non-raft phospholipid molecules (0.33 µm²/second), despite Bdp-Chol's probable association with raft domains. Furthermore, Bdp-Chol exhibited no sign of entrapment in time scales longer than 0.5 milliseconds. In the blebbed PM, where actin filaments were largely depleted, Bdp-Chol and Cy3-conjugated dioleoylphosphatidylethanolamine (Cy3-DOPE) diffused at comparable Ds (medians = 5.8 and 6.2 µm²/second, respectively), indicating that the actin-based membrane skeleton reduces the D of Bdp-Chol only by a factor of ∼2 from that in the blebbed PM, whereas it reduces the D of Cy3-DOPE by a factor of ∼20. These results are consistent with the previously proposed model, in which the PM is compartmentalized by the actin-based membrane-skeleton fence and its associated transmembrane picket proteins for the macroscopic diffusion of all of the membrane molecules, and suggest that the probability of Bdp-Chol passing through the compartment boundaries, once it enters the boundary, is ∼10× greater than that of Cy3-DOPE. Since the compartment sizes are greater than those of the putative raft domains, we conclude that raft domains coexist with membrane-skeleton-induced compartments and are contained within them.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Compostos de Boro , Linhagem Celular , Colesterol/análogos & derivados , Difusão , Corantes Fluorescentes , Microdomínios da Membrana/efeitos dos fármacos , Fosfatidiletanolaminas/farmacologia , Ratos
16.
Trends Biochem Sci ; 36(11): 604-15, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21917465

RESUMO

Based on recent single-molecule imaging results in the living cell plasma membrane, we propose a hierarchical architecture of three-tiered mesoscale (2-300nm) domains to represent the fundamental functional organization of the plasma membrane: (i) membrane compartments of 40-300nm in diameter due to the partitioning of the entire plasma membrane by the actin-based membrane skeleton 'fence' and transmembrane protein 'pickets' anchored to the fence; (ii) raft domains (2-20nm); and (iii) dimers/oligomers and greater complexes of membrane-associated proteins (3-10nm). The basic molecular interactions required for the signal transduction function of the plasma membrane can be fundamentally understood and conveniently summarized as the cooperative actions of these mesoscale domains, where thermal fluctuations/movements of molecules and weak cooperativity play crucial roles.


Assuntos
Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Animais , Humanos , Modelos Biológicos , Transdução de Sinais
17.
Semin Cell Dev Biol ; 23(2): 126-44, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22309841

RESUMO

Virtually all biological membranes on earth share the basic structure of a two-dimensional liquid. Such universality and peculiarity are comparable to those of the double helical structure of DNA, strongly suggesting the possibility that the fundamental mechanisms for the various functions of the plasma membrane could essentially be understood by a set of simple organizing principles, developed during the course of evolution. As an initial effort toward the development of such understanding, in this review, we present the concept of the cooperative action of the hierarchical three-tiered meso-scale (2-300 nm) domains in the plasma membrane: (1) actin membrane-skeleton-induced compartments (40-300 nm), (2) raft domains (2-20 nm), and (3) dynamic protein complex domains (3-10nm). Special attention is paid to the concept of meso-scale domains, where both thermal fluctuations and weak cooperativity play critical roles, and the coupling of the raft domains to the membrane-skeleton-induced compartments as well as dynamic protein complexes. The three-tiered meso-domain architecture of the plasma membrane provides an excellent perspective for understanding the membrane mechanisms of signal transduction.


Assuntos
Membrana Celular/química , Microdomínios da Membrana/química , Proteínas de Membrana/química , Complexos Multiproteicos/química , Transdução de Sinais , Citoesqueleto de Actina/química , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Colesterol/química , Difusão , Membranas Artificiais , Microscopia Eletrônica , Modelos Biológicos , Mapeamento de Interação de Proteínas
18.
Nat Chem Biol ; 8(9): 774-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22820419

RESUMO

Advanced single-molecule fluorescent imaging was applied to study the dynamic organization of raft-associated glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the plasma membrane and their stimulation-induced changes. In resting cells, virtually all of the GPI-APs are mobile and continually form transient (~200 ms) homodimers (termed homodimer rafts) through ectodomain protein interactions, stabilized by the presence of the GPI-anchoring chain and cholesterol. Heterodimers do not form, suggesting a fundamental role for the specific ectodomain protein interaction. Under higher physiological expression conditions , homodimers coalesce to form hetero- and homo-GPI-AP oligomer rafts through raft-based lipid interactions. When CD59 was ligated, it formed stable oligomer rafts containing up to four CD59 molecules, which triggered intracellular Ca(2+) responses that were dependent on GPI anchorage and cholesterol, suggesting a key part played by transient homodimer rafts. Transient homodimer rafts are most likely one of the basic units for the organization and function of raft domains containing GPI-APs.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Microdomínios da Membrana , Antígenos CD59/metabolismo , Dimerização , Transferência Ressonante de Energia de Fluorescência
19.
Curr Opin Cell Biol ; 89: 102394, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963953

RESUMO

This review examines the dynamic mechanisms underlying cellular signaling, communication, and adhesion via transient, nano-scale, liquid-like molecular assemblies on the plasma membrane (PM). Traditional views posit that stable, solid-like molecular complexes perform these functions. However, advanced imaging reveals that many signaling and scaffolding proteins only briefly reside in these molecular complexes and that micron-scale protein assemblies on the PM, including cell adhesion structures and synapses, are likely made of archipelagoes of nanoliquid protein islands. Borrowing the concept of liquid-liquid phase separation to form micron-scale biocondensates, we propose that these nano-scale oligomers and assemblies are enabled by multiple weak but specific molecular interactions often involving intrinsically disordered regions. The signals from individual nanoliquid signaling complexes would occur as pulses. Single-molecule imaging emerges as a crucial technique for characterizing these transient nanoliquid assemblies on the PM, suggesting a shift toward a model where the fluidity of interactions underpins signal regulation and integration.


Assuntos
Membrana Celular , Humanos , Animais , Membrana Celular/metabolismo , Membrana Celular/química , Transdução de Sinais
20.
Sci Rep ; 14(1): 16872, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043900

RESUMO

Sphingomyelin (SM) is a major sphingolipid in mammalian cells. SM is enriched in the extracellular leaflet of the plasma membrane (PM). Besides this localization, recent electron microscopic and biochemical studies suggest the presence of SM in the cytosolic leaflet of the PM. In the present study, we generated a non-toxic SM-binding variant (NT-EqtII) based on equinatoxin-II (EqtII) from the sea anemone Actinia equina, and examined the dynamics of SM in the cytosolic leaflet of living cell PMs. NT-EqtII with two point mutations (Leu26Ala and Pro81Ala) had essentially the same specificity and affinity to SM as wild-type EqtII. NT-EqtII expressed in the cytosol was recruited to the PM in various cell lines. Super-resolution microscopic observation revealed that NT-EqtII formed tiny domains that were significantly colocalized with cholesterol and N-terminal Lyn. Meanwhile, single molecule observation at high resolutions down to 1 ms revealed that all the examined lipid probes including NT-EqtII underwent apparent fast simple Brownian diffusion, exhibiting that SM and other lipids in the cytosolic leaflet rapidly moved in and out of domains. Thus, the novel SM-binding probe demonstrated the presence of the raft-like domain in the cytosolic leaflet of living cell PMs.


Assuntos
Membrana Celular , Venenos de Cnidários , Citosol , Esfingomielinas , Esfingomielinas/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Animais , Venenos de Cnidários/metabolismo , Venenos de Cnidários/genética , Humanos , Anêmonas-do-Mar/metabolismo , Anêmonas-do-Mar/genética , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA