Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ann Intern Med ; 177(4): 418-427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560914

RESUMO

BACKGROUND: Elevated tuberculosis (TB) incidence rates have recently been reported for racial/ethnic minority populations in the United States. Tracking such disparities is important for assessing progress toward national health equity goals and implementing change. OBJECTIVE: To quantify trends in racial/ethnic disparities in TB incidence among U.S.-born persons. DESIGN: Time-series analysis of national TB registry data for 2011 to 2021. SETTING: United States. PARTICIPANTS: U.S.-born persons stratified by race/ethnicity. MEASUREMENTS: TB incidence rates, incidence rate differences, and incidence rate ratios compared with non-Hispanic White persons; excess TB cases (calculated from incidence rate differences); and the index of disparity. Analyses were stratified by sex and by attribution of TB disease to recent transmission and were adjusted for age, year, and state of residence. RESULTS: In analyses of TB incidence rates for each racial/ethnic population compared with non-Hispanic White persons, incidence rate ratios were as high as 14.2 (95% CI, 13.0 to 15.5) among American Indian or Alaska Native (AI/AN) females. Relative disparities were greater for females, younger persons, and TB attributed to recent transmission. Absolute disparities were greater for males. Excess TB cases in 2011 to 2021 represented 69% (CI, 66% to 71%) and 62% (CI, 60% to 64%) of total cases for females and males, respectively. No evidence was found to indicate that incidence rate ratios decreased over time, and most relative disparity measures showed small, statistically nonsignificant increases. LIMITATION: Analyses assumed complete TB case diagnosis and self-report of race/ethnicity and were not adjusted for medical comorbidities or social determinants of health. CONCLUSION: There are persistent disparities in TB incidence by race/ethnicity. Relative disparities were greater for AI/AN persons, females, and younger persons, and absolute disparities were greater for males. Eliminating these disparities could reduce overall TB incidence by more than 60% among the U.S.-born population. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention.


Assuntos
Etnicidade , Tuberculose , Estados Unidos/epidemiologia , Humanos , Incidência , Dados de Saúde Coletados Rotineiramente , Grupos Minoritários , Vigilância da População , Tuberculose/epidemiologia , Tuberculose/prevenção & controle
2.
Epidemiology ; 35(2): 164-173, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290139

RESUMO

BACKGROUND: In the United States, over 80% of tuberculosis (TB) disease cases are estimated to result from reactivation of latent TB infection (LTBI) acquired more than 2 years previously ("reactivation TB"). We estimated reactivation TB rates for the US population with LTBI, overall, by age, sex, race-ethnicity, and US-born status, and for selected comorbidities (diabetes, end-stage renal disease, and HIV). METHODS: We collated nationally representative data for 2011-2012. Reactivation TB incidence was based on TB cases reported to the National TB Surveillance System that were attributed to LTBI reactivation. Person-years at risk of reactivation TB were calculated using interferon-gamma release assay (IGRA) positivity from the National Health and Nutrition Examination Survey, published values for interferon-gamma release assay sensitivity and specificity, and population estimates from the American Community Survey. RESULTS: For persons aged ≥6 years with LTBI, the overall reactivation rate was estimated as 0.072 (95% uncertainty interval: 0.047, 0.12) per 100 person-years. Estimated reactivation rates declined with age. Compared to the overall population, estimated reactivation rates were higher for persons with diabetes (adjusted rate ratio [aRR] = 1.6 [1.5, 1.7]), end-stage renal disease (aRR = 9.8 [5.4, 19]), and HIV (aRR = 12 [10, 13]). CONCLUSIONS: In our study, individuals with LTBI faced small, non-negligible risks of reactivation TB. Risks were elevated for individuals with medical comorbidities that weaken immune function.


Assuntos
Diabetes Mellitus , Infecções por HIV , Falência Renal Crônica , Mycobacterium tuberculosis , Tuberculose , Humanos , Estados Unidos/epidemiologia , Inquéritos Nutricionais , Tuberculose/epidemiologia , Tuberculose/diagnóstico , Falência Renal Crônica/epidemiologia , Infecções por HIV/epidemiologia
3.
Clin Infect Dis ; 76(3): e350-e359, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717642

RESUMO

BACKGROUND: Both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) vaccination contribute to population-level immunity against SARS-CoV-2. This study estimated the immunological exposure and effective protection against future SARS-CoV-2 infection in each US state and county over 2020-2021 and how this changed with the introduction of the Omicron variant. METHODS: We used a Bayesian model to synthesize estimates of daily SARS-CoV-2 infections, vaccination data and estimates of the relative rates of vaccination conditional on infection status to estimate the fraction of the population with (1) immunological exposure to SARS-CoV-2 (ever infected with SARS-CoV-2 and/or received ≥1 doses of a COVID-19 vaccine), (2) effective protection against infection, and (3) effective protection against severe disease, for each US state and county from 1 January 2020 to 1 December 2021. RESULTS: The estimated percentage of the US population with a history of SARS-CoV-2 infection or vaccination as of 1 December 2021 was 88.2% (95% credible interval [CrI], 83.6%-93.5%). Accounting for waning and immune escape, effective protection against the Omicron variant on 1 December 2021 was 21.8% (95% CrI, 20.7%-23.4%) nationally and ranged between 14.4% (13.2%-15.8%; West Virginia) and 26.4% (25.3%-27.8%; Colorado). Effective protection against severe disease from Omicron was 61.2% (95% CrI, 59.1%-64.0%) nationally and ranged between 53.0% (47.3%-60.0%; Vermont) and 65.8% (64.9%-66.7%; Colorado). CONCLUSIONS: While more than four-fifths of the US population had prior immunological exposure to SARS-CoV-2 via vaccination or infection on 1 December 2021, only a fifth of the population was estimated to have effective protection against infection with the immune-evading Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teorema de Bayes , Vacinas contra COVID-19 , Vacinação
4.
Clin Infect Dis ; 77(3): 355-361, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37074868

RESUMO

BACKGROUND: Although a substantial fraction of the US population was infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during December 2021-February 2022, the subsequent evolution of population immunity reflects the competing influences of waning protection over time and acquisition or restoration of immunity through additional infections and vaccinations. METHODS: Using a Bayesian evidence synthesis model of reported coronavirus disease 2019 (COVID-19) data (diagnoses, hospitalizations), vaccinations, and waning patterns for vaccine- and infection-acquired immunity, we estimate population immunity against infection and severe disease from SARS-CoV-2 Omicron variants in the United States, by location (national, state, county) and week. RESULTS: By 9 November 2022, 97% (95%-99%) of the US population were estimated to have prior immunological exposure to SARS-CoV-2. Between 1 December 2021 and 9 November 2022, protection against a new Omicron infection rose from 22% (21%-23%) to 63% (51%-75%) nationally, and protection against an Omicron infection leading to severe disease increased from 61% (59%-64%) to 89% (83%-92%). Increasing first booster uptake to 55% in all states (current US coverage: 34%) and second booster uptake to 22% (current US coverage: 11%) would increase protection against infection by 4.5 percentage points (2.4-7.2) and protection against severe disease by 1.1 percentage points (1.0-1.5). CONCLUSIONS: Effective protection against SARS-CoV-2 infection and severe disease in November 2022 was substantially higher than in December 2021. Despite this high level of protection, a more transmissible or immune evading (sub)variant, changes in behavior, or ongoing waning of immunity could lead to a new SARS-CoV-2 wave.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , Teorema de Bayes , Imunidade Adaptativa
5.
BMC Med ; 21(1): 331, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649031

RESUMO

BACKGROUND: In the United States, the tuberculosis (TB) disease burden and associated factors vary substantially across states. While public health agencies must choose how to deploy resources to combat TB and latent tuberculosis infection (LTBI), state-level modeling analyses to inform policy decisions have not been widely available. METHODS: We developed a mathematical model of TB epidemiology linked to a web-based user interface - Tabby2. The model is calibrated to epidemiological and demographic data for the United States, each U.S. state, and the District of Columbia. Users can simulate pre-defined scenarios describing approaches to TB prevention and treatment or create their own intervention scenarios. Location-specific results for epidemiological outcomes, service utilization, costs, and cost-effectiveness are reported as downloadable tables and customizable visualizations. To demonstrate the tool's functionality, we projected trends in TB outcomes without additional intervention for all 50 states and the District of Columbia. We further undertook a case study of expanded treatment of LTBI among non-U.S.-born individuals in Massachusetts, covering 10% of the target population annually over 2025-2029. RESULTS: Between 2022 and 2050, TB incidence rates were projected to decline in all states and the District of Columbia. Incidence projections for the year 2050 ranged from 0.03 to 3.8 cases (median 0.95) per 100,000 persons. By 2050, we project that majority (> 50%) of TB will be diagnosed among non-U.S.-born persons in 46 states and the District of Columbia; per state percentages range from 17.4% to 96.7% (median 83.0%). In Massachusetts, expanded testing and treatment for LTBI in this population was projected to reduce cumulative TB cases between 2025 and 2050 by 6.3% and TB-related deaths by 8.4%, relative to base case projections. This intervention had an incremental cost-effectiveness ratio of $180,951 (2020 USD) per quality-adjusted life year gained from the societal perspective. CONCLUSIONS: Tabby2 allows users to estimate the costs, impact, and cost-effectiveness of different TB prevention approaches for multiple geographic areas in the United States. Expanded testing and treatment for LTBI could accelerate declines in TB incidence in the United States, as demonstrated in the Massachusetts case study.


Assuntos
Tuberculose Latente , Tuberculose , Estados Unidos/epidemiologia , Humanos , Gravidez , Feminino , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Antibioticoprofilaxia , Efeitos Psicossociais da Doença , Parto
6.
PLoS Comput Biol ; 18(8): e1010465, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040963

RESUMO

Reported COVID-19 cases and deaths provide a delayed and incomplete picture of SARS-CoV-2 infections in the United States (US). Accurate estimates of both the timing and magnitude of infections are needed to characterize viral transmission dynamics and better understand COVID-19 disease burden. We estimated time trends in SARS-CoV-2 transmission and other COVID-19 outcomes for every county in the US, from the first reported COVID-19 case in January 13, 2020 through January 1, 2021. To do so we employed a Bayesian modeling approach that explicitly accounts for reporting delays and variation in case ascertainment, and generates daily estimates of incident SARS-CoV-2 infections on the basis of reported COVID-19 cases and deaths. The model is freely available as the covidestim R package. Nationally, we estimated there had been 49 million symptomatic COVID-19 cases and 404,214 COVID-19 deaths by the end of 2020, and that 28% of the US population had been infected. There was county-level variability in the timing and magnitude of incidence, with local epidemiological trends differing substantially from state or regional averages, leading to large differences in the estimated proportion of the population infected by the end of 2020. Our estimates of true COVID-19 related deaths are consistent with independent estimates of excess mortality, and our estimated trends in cumulative incidence of SARS-CoV-2 infection are consistent with trends in seroprevalence estimates from available antibody testing studies. Reconstructing the underlying incidence of SARS-CoV-2 infections across US counties allows for a more granular understanding of disease trends and the potential impact of epidemiological drivers.


Assuntos
COVID-19 , Epidemias , Teorema de Bayes , COVID-19/epidemiologia , Humanos , SARS-CoV-2 , Estudos Soroepidemiológicos , Estados Unidos/epidemiologia
7.
Am J Respir Crit Care Med ; 202(11): 1567-1575, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32645277

RESUMO

Rationale: Most U.S. residents who develop tuberculosis (TB) were born abroad, and U.S. TB incidence is increasingly driven by infection risks in other countries.Objectives: To estimate the potential impact of effective global TB control on health and economic outcomes in the United States.Methods: We estimated outcomes using linked mathematical models of TB epidemiology in the United States and migrants' birth countries. A base-case scenario extrapolated country-specific TB incidence trends. We compared this with scenarios in which countries achieve 90% TB incidence reductions between 2015 and 2035, as targeted by the World Health Organization's End TB Strategy ("effective global TB control"). We also considered pessimistic scenarios of flat TB incidence trends in individual countries.Measurements and Main Results: We estimated TB cases, deaths, and costs and the total economic burden of TB in the United States. Compared with the base-case scenario, effective global TB control would avert 40,000 (95% uncertainty interval, 29,000-55,000) TB cases in the United States in 2020-2035. TB incidence rates in 2035 would be 43% (95% uncertainty interval, 34-54%) lower than in the base-case scenario, and 49% (95% uncertainty interval, 44-55%) lower than in 2020. Summed over 2020-2035, this represents 0.8 billion dollars (95% uncertainty interval, 0.6-1.0 billion dollars) in averted healthcare costs and $2.5 billion dollars (95% uncertainty interval, 1.7-3.6 billion dollars) in productivity gains. The total U.S. economic burden of TB (including the value of averted TB deaths) would be 21% (95% uncertainty interval, 16-28%) lower (18 billion dollars [95% uncertainty level, 8-32 billion dollars]).Conclusions: In addition to producing major health benefits for high-burden countries, strengthened efforts to achieve effective global TB control could produce substantial health and economic benefits for the United States.


Assuntos
Controle de Doenças Transmissíveis , Emigrantes e Imigrantes/estatística & dados numéricos , Saúde Global , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , China/epidemiologia , China/etnologia , Erradicação de Doenças , Custos de Cuidados de Saúde , Humanos , Incidência , Índia/epidemiologia , Índia/etnologia , México/epidemiologia , México/etnologia , Modelos Teóricos , Filipinas/epidemiologia , Filipinas/etnologia , Tuberculose/economia , Tuberculose/mortalidade , Estados Unidos/epidemiologia , Vietnã/epidemiologia , Vietnã/etnologia
8.
PLoS One ; 19(1): e0296154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165918

RESUMO

Several observational studies from locations around the globe have documented a positive correlation between air pollution and the severity of COVID-19 disease. Observational studies cannot identify the causal link between air quality and the severity of COVID-19 outcomes, and these studies face three key identification challenges: 1) air pollution is not randomly distributed across geographies; 2) air-quality monitoring networks are sparse spatially; and 3) defensive behaviors to mediate exposure to air pollution and COVID-19 are not equally available to all, leading to large measurement error bias when using rate-based COVID-19 outcome measures (e.g., incidence rate or mortality rate). Using a quasi-experimental design, we explore whether traffic-related air pollutants cause people with COVID-19 to suffer more extreme health outcomes in New York City (NYC). When we address the previously overlooked challenges to identification, we do not detect causal impacts of increased chronic concentrations of traffic-related air pollutants on COVID-19 death or hospitalization counts in NYC census tracts.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , COVID-19/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Emissões de Veículos/análise , Material Particulado/análise
9.
Lancet Public Health ; 9(1): e47-e56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176842

RESUMO

BACKGROUND: Persistent racial and ethnic disparities in tuberculosis incidence exist in the USA, however, less is known about disparities along the tuberculosis continuum of care. This study aimed to describe how race and ethnicity are associated with tuberculosis diagnosis and treatment outcomes. METHODS: In this analysis of national surveillance data, we extracted data from the US National Tuberculosis Surveillance System on US-born patients with tuberculosis during 2003-19. To estimate the association between race and ethnicity and tuberculosis diagnosis (diagnosis after death, cavitation, and sputum smear positivity) and treatment outcomes (treatment for more than 12 months, treatment discontinuation, and death during treatment), we fitted log-binomial regression models adjusting for calendar year, sex, age category, and regional division. Race and ethnicity were defined based on US Census Bureau classification as White, Black, Hispanic, Asian, American Indian or Alaska Native, Native Hawaiian or Pacific Islander, and people of other ethnicities. We quantified racial and ethnic disparities as adjusted relative risks (aRRs) using non-Hispanic White people as the reference group. We also calculated the Index of Disparity as a summary measure that quantifies the dispersion in a given outcome across all racial and ethnic groups, relative to the population mean. We estimated time trends in each outcome to evaluate whether disparities were closing or widening. FINDINGS: From 2003 to 2019, there were 72 809 US-born individuals diagnosed with tuberculosis disease of whom 72 369 (35·7% women and 64·3% men) could be included in analyses. We observed an overall higher risk of any adverse outcome (defined as diagnosis after death, treatment discontinuation, or death during treatment) for non-Hispanic Black people (aRR 1·27, 95% CI 1·22-1·32), Hispanic people (1·20, 1·14-1·27), and American Indian or Alaska Native people (1·24, 1·12-1·37), relative to non-Hispanic White people. The Index of Disparity for this summary outcome remained unchanged over the study period. INTERPRETATION: This study, based on national surveillance data, indicates racial and ethnic disparaties among US-born tuberculosis patients along the tuberculosis continuum of care. Initiatives are needed to reduce diagnostic delays and improve treatment outcomes for US-born racially marginalised people in the USA. FUNDING: US Centers for Disease Control and Prevention.


Assuntos
Etnicidade , Disparidades em Assistência à Saúde , Grupos Raciais , Tuberculose , Feminino , Humanos , Masculino , Resultado do Tratamento , Tuberculose/diagnóstico , Estados Unidos
10.
Cell Rep ; 43(7): 114451, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970788

RESUMO

Omicron surged as a variant of concern in late 2021. Several distinct Omicron variants appeared and overtook each other. We combined variant frequencies and infection estimates from a nowcasting model for each US state to estimate variant-specific infections, attack rates, and effective reproduction numbers (Rt). BA.1 rapidly emerged, and we estimate that it infected 47.7% of the US population before it was replaced by BA.2. We estimate that BA.5 infected 35.7% of the US population, persisting in circulation for nearly 6 months. Other variants-BA.2, BA.4, and XBB-together infected 30.7% of the US population. We found a positive correlation between the state-level BA.1 attack rate and social vulnerability and a negative correlation between the BA.1 and BA.2 attack rates. Our findings illustrate the complex interplay between viral evolution, population susceptibility, and social factors during the Omicron emergence in the US.

11.
medRxiv ; 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981078

RESUMO

Prior infection and vaccination both contribute to population-level SARS-CoV-2 immunity. We used a Bayesian model to synthesize evidence and estimate population immunity to prevalent SARS-CoV-2 variants in the United States over the course of the epidemic until December 1, 2021, and how this changed with the introduction of the Omicron variant. We used daily SARS-CoV-2 infection estimates and vaccination coverage data for each US state and county. We estimated relative rates of vaccination conditional on previous infection status using the Census Bureau’s Household Pulse Survey. We used published evidence on natural and vaccine-induced immunity, including waning and immune escape. The estimated percentage of the US population with a history of SARS-CoV-2 infection or vaccination as of December 1, 2021, was 88.2% (95%CrI: 83.6%-93.5%), compared to 24.9% (95%CrI: 18.5%-34.1%) on January 1, 2021. State-level estimates for December 1, 2021, ranged between 76.9% (95%CrI: 67.6%-87.6%, West Virginia) and 94.4% (95%CrI: 91.2%-97.3%, New Mexico). Accounting for waning and immune escape, the effective protection against the Omicron variant on December 1, 2021, was 21.8% (95%CrI: 20.7%-23.4%) nationally and ranged between 14.4% (95%CrI: 13.2%-15.8%, West Virginia), to 26.4% (95%CrI: 25.3%-27.8%, Colorado). Effective protection against severe disease from Omicron was 61.2% (95%CrI: 59.1%-64.0%) nationally and ranged between 53.0% (95%CrI: 47.3%-60.0%, Vermont) and 65.8% (95%CrI: 64.9%-66.7%, Colorado). While over three-quarters of the US population had prior immunological exposure to SARS-CoV-2 via vaccination or infection on December 1, 2021, only a fifth of the population was estimated to have effective protection to infection with the immune-evading Omicron variant. Significance: Both SARS-CoV-2 infection and COVID-19 vaccination contribute to population-level immunity against SARS-CoV-2. This study estimates the immunity and effective protection against future SARS-CoV-2 infection in each US state and county over 2020-2021. The estimated percentage of the US population with a history of SARS-CoV-2 infection or vaccination as of December 1, 2021, was 88.2% (95%CrI: 83.6%-93.5%). Accounting for waning and immune escape, protection against the Omicron variant was 21.8% (95%CrI: 20.7%-23.4%). Protection against infection with the Omicron variant ranged between 14.4% (95%CrI: 13.2%-15.8%%, West Virginia) and 26.4% (95%CrI: 25.3%-27.8%, Colorado) across US states. The introduction of the immune-evading Omicron variant resulted in an effective absolute increase of approximately 30 percentage points in the fraction of the population susceptible to infection.

12.
medRxiv ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36451882

RESUMO

Importance: While a substantial fraction of the US population was infected with SARS-CoV-2 during December 2021 - February 2022, the subsequent evolution of population immunity against SARS-CoV-2 Omicron variants reflects the competing influences of waning protection over time and acquisition or restoration of immunity through additional infections and vaccinations. Objective: To estimate changes in population immunity against infection and severe disease due to circulating SARS-CoV-2 Omicron variants in the United States from December 2021 to November 2022, and to quantify the protection against a potential 2022-2023 winter SARS-CoV-2 wave. Design setting participants: Bayesian evidence synthesis of reported COVID-19 data (diagnoses, hospitalizations), vaccinations, and waning patterns for vaccine- and infection-acquired immunity, using a mathematical model of COVID-19 natural history. Main Outcomes and Measures: Population immunity against infection and severe disease from SARS-CoV-2 Omicron variants in the United States, by location (national, state, county) and week. Results: By November 9, 2022, 94% (95% CrI, 79%-99%) of the US population were estimated to have been infected by SARS-CoV-2 at least once. Combined with vaccination, 97% (95%-99%) were estimated to have some prior immunological exposure to SARS-CoV-2. Between December 1, 2021 and November 9, 2022, protection against a new Omicron infection rose from 22% (21%-23%) to 63% (51%-75%) nationally, and protection against an Omicron infection leading to severe disease increased from 61% (59%-64%) to 89% (83%-92%). Increasing first booster uptake to 55% in all states (current US coverage: 34%) and second booster uptake to 22% (current US coverage: 11%) would increase protection against infection by 4.5 percentage points (2.4-7.2) and protection against severe disease by 1.1 percentage points (1.0-1.5). Conclusions and Relevance: Effective protection against SARS-CoV-2 infection and severe disease in November 2022 was substantially higher than in December 2021. Despite this high level of protection, a more transmissible or immune evading (sub)variant, changes in behavior, or ongoing waning of immunity could lead to a new SARS-CoV-2 wave. Key points: Question: How did population immunity against SARS-CoV-2 infection and subsequent severe disease change between December 2021, and November 2022?Findings: On November 9, 2022, the protection against a SARS-CoV-2 infection with the Omicron variant was estimated to be 63% (51%-75%) in the US, and the protection against severe disease was 89% (83%-92%).Meaning: As most of the newly acquired immunity has been accumulated in the December 2021-February 2022 Omicron wave, risk of reinfection and subsequent severe disease remains present at the beginning of the 2022-2023 winter, despite high levels of protection.

13.
medRxiv ; 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-33851183

RESUMO

Reported COVID-19 cases and deaths provide a delayed and incomplete picture of SARS-CoV-2 infections in the United States (US). Accurate estimates of both the timing and magnitude of infections are needed to characterize viral transmission dynamics and better understand COVID-19 disease burden. We estimated time trends in SARS-CoV-2 transmission and other COVID-19 outcomes for every county in the US, from the first reported COVID-19 case in January 13, 2020 through January 1, 2021. To do so we employed a Bayesian modeling approach that explicitly accounts for reporting delays and variation in case ascertainment, and generates daily estimates of incident SARS-CoV-2 infections on the basis of reported COVID-19 cases and deaths. The model is freely available as the covidestim R package. Nationally, we estimated there had been 49 million symptomatic COVID-19 cases and 400,718 COVID-19 deaths by the end of 2020, and that 27% of the US population had been infected. The results also demonstrate wide county-level variability in the timing and magnitude of incidence, with local epidemiological trends differing substantially from state or regional averages, leading to large differences in the estimated proportion of the population infected by the end of 2020. Our estimates of true COVID-19 related deaths are consistent with independent estimates of excess mortality, and our estimated trends in cumulative incidence of SARS-CoV-2 infection are consistent with trends in seroprevalence estimates from available antibody testing studies. Reconstructing the underlying incidence of SARS-CoV-2 infections across US counties allows for a more granular understanding of disease trends and the potential impact of epidemiological drivers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA