Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 21(1): 124, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32216745

RESUMO

BACKGROUND: The notion of heme as a regulator of many physiological processes via transient binding to proteins is one that is recently being acknowledged. The broad spectrum of the effects of heme makes it important to identify further heme-regulated proteins to understand physiological and pathological processes. Moreover, several proteins were shown to be functionally regulated by interaction with heme, yet, for some of them the heme-binding site(s) remain unknown. The presented application HeMoQuest enables identification and qualitative evaluation of such heme-binding motifs from protein sequences. RESULTS: We present HeMoQuest, an online interface (http://bit.ly/hemoquest) to algorithms that provide the user with two distinct qualitative benefits. First, our implementation rapidly detects transient heme binding to nonapeptide motifs from protein sequences provided as input. Additionally, the potential of each predicted motif to bind heme is qualitatively gauged by assigning binding affinities predicted by an ensemble learning implementation, trained on experimentally determined binding affinity data. Extensive testing of our implementation on both existing and new manually curated datasets reveal that our method produces an unprecedented level of accuracy (92%) in identifying those residues assigned "heme binding" in all of the datasets used. Next, the machine learning implementation for the prediction and qualitative assignment of binding affinities to the predicted motifs achieved 71% accuracy on our data. CONCLUSIONS: Heme plays a crucial role as a regulatory molecule exerting functional consequences via transient binding to surfaces of target proteins. HeMoQuest is designed to address this imperative need for a computational approach that enables rapid detection of heme-binding motifs from protein datasets. While most existing implementations attempt to predict sites of permanent heme binding, this application is to the best of our knowledge, the first of its kind to address the significance of predicting transient heme binding to proteins.


Assuntos
Motivos de Aminoácidos , Heme/metabolismo , Software , Algoritmos , Sítios de Ligação , Internet , Aprendizado de Máquina , Ligação Proteica , Análise de Sequência de Proteína
2.
Biochim Biophys Acta ; 1860(6): 1343-53, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27015758

RESUMO

BACKGROUND: The occurrence of free organismal heme can either contribute to serious diseases or beneficially regulate important physiological processes. Research on transient binding to heme-regulatory motifs (HRMs) in proteins resulted in the discovery of numerous Cys-based, especially Cys-Pro (CP)-based motifs. However, the number of His- and Tyr-based protein representatives is comparatively low so far, which is in part caused by a lack of information regarding recognition and binding requirements. METHODS: To understand transient heme association with such motifs on the molecular level, we analyzed a set of 44 His- and Tyr-based peptides using UV-vis, resonance Raman, cw-EPR and 2D NMR spectroscopy. RESULTS: We observed similarities with Cys-based sequences with respect to their spectral behavior and complex geometries. However, significant differences regarding heme-binding affinities and sequence requirements were also found. Compared to Cys-based peptides and proteins all sequences investigated structurally display increased flexibility already in the free-state, which is also maintained upon heme association. The acquired knowledge allowed for identification and prediction of a His-based HRM in chloramphenicol acetyltransferase from Escherichia coli as potential heme-regulated protein. The enzyme's heme-interacting capability was studied, and revealed an inhibitory effect of heme on the protein activity with an IC50 value of 57.69±4.37 µM. CONCLUSIONS: It was found that heme inhibits a bacterial protein carrying a potential His-based HRM. This finding brings microbial proteins more into focus of regulation by free heme. GENERAL SIGNIFICANCE: Understanding transient binding and regulatory action of heme with bacterial proteins, being crucial for survival, might promote new strategies for the treatment of bacterial infections.


Assuntos
Cloranfenicol O-Acetiltransferase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Heme/farmacologia , Motivos de Aminoácidos , Cloranfenicol O-Acetiltransferase/química , Espectroscopia de Ressonância de Spin Eletrônica , Histidina , Espectroscopia de Ressonância Magnética , Análise Espectral Raman , Tirosina
3.
Biochim Biophys Acta Gen Subj ; 1864(7): 129603, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32234408

RESUMO

BACKGROUND & MOTIVATION: Peptides and proteins can interact with heme through His, Tyr, or Cys in heme-regulatory motifs (HRMs). The Cys-Pro dipeptide is a well investigated HRM, but for His and Tyr such a distinct motif is currently unknown. In addition, many heme-peptide complexes, such as heme-amyloid ß, can display a peroxidase-like activity, albeit there is little understanding of how the local primary and secondary coordination environment influences catalytic activity. We thus systematically evaluated a series of His- and Tyr-based peptides to identify sequence features for high-affinity heme binding and their impact on the catalytic activity of heme. METHODS: We employed solid-phase peptide synthesis to produce 58 nonapeptides, which were investigated by UV/vis, resonance Raman, and 2D NMR spectroscopy. A chromogenic assay was used to determine the catalytic activity of the heme-peptide complexes. RESULTS: Heme-binding affinity and binding mode were found to be dependent on the coordinating amino acid and spacer length between multiple potential coordination sites in a motif. In particular, HXH and HXXXH motifs showed strong heme binding. Analysis of the peroxidase-like activity revealed that some of these peptides and also HXXXY motifs enhance the catalytic activity of heme significantly. CONCLUSIONS: We identify HXH, HXXXH, and HXXXY as potential new HRMs with functional properties. Several peptides displayed a strikingly high peroxidase-like activity. GENERAL SIGNIFICANCE: The identification of HRMs allows to discover yet unknown heme-regulated proteins, and consequently, enhances our current understanding of pathologies involving labile heme.


Assuntos
Heme , Hemeproteínas , Peptídeos beta-Amiloides , Heme/metabolismo , Hemeproteínas/metabolismo , Espectroscopia de Ressonância Magnética , Peroxidases
4.
Artigo em Inglês | MEDLINE | ID: mdl-32211383

RESUMO

Heme is an iron ion-containing molecule found within hemoproteins such as hemoglobin and cytochromes that participates in diverse biological processes. Although excessive heme has been implicated in several diseases including malaria, sepsis, ischemia-reperfusion, and disseminated intravascular coagulation, little is known about its regulatory and signaling functions. Furthermore, the limited understanding of heme's role in regulatory and signaling functions is in part due to the lack of curated pathway resources for heme cell biology. Here, we present two resources aimed to exploit this unexplored information to model heme biology. The first resource is a terminology covering heme-specific terms not yet included in standard controlled vocabularies. Using this terminology, we curated and modeled the second resource, a mechanistic knowledge graph representing the heme's interactome based on a corpus of 46 scientific articles. Finally, we demonstrated the utility of these resources by investigating the role of heme in the Toll-like receptor signaling pathway. Our analysis proposed a series of crosstalk events that could explain the role of heme in activating the TLR4 signaling pathway. In summary, the presented work opens the door to the scientific community for exploring the published knowledge on heme biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA