Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cereb Cortex ; 33(18): 10047-10065, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522285

RESUMO

The neural cell adhesion molecule 2 (NCAM2) regulates axonal organization in the central nervous system via mechanisms that have remained poorly understood. We now show that NCAM2 increases axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protease that regulates axonal guidance. In brains of NCAM2-deficient mice, BACE1 levels are reduced in hippocampal mossy fiber projections, and the infrapyramidal bundle of these projections is shortened. This abnormal axonal organization correlates with impaired short-term spatial memory and cognitive flexibility in NCAM2-deficient male and female mice. Self-grooming, rearing, digging and olfactory acuity are increased in NCAM2-deficient male mice, when compared with littermate wild-type mice of the same sex. NCAM2-deficient female mice also show increased self-grooming, but are reduced in rearing, and do not differ from female wild-type mice in olfactory acuity and digging behavior. Our results indicate that errors in axonal guidance and organization caused by impaired BACE1 function can underlie the manifestation of neurodevelopmental disorders, including autism as found in humans with deletions of the NCAM2 gene.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Hipocampo/metabolismo , Fibras Musgosas Hipocampais , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo
2.
Cell Mol Life Sci ; 79(11): 555, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251052

RESUMO

Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as ß-secretase, is an aspartic protease. The sorting of this enzyme into Rab11-positive recycling endosomes regulates the BACE1-mediated cleavage of its substrates, however, the mechanisms underlying this targeting remain poorly understood. The neural cell adhesion molecule 2 (NCAM2) is a substrate of BACE1. We show that BACE1 cleaves NCAM2 in cultured hippocampal neurons and NCAM2-transfected CHO cells. The C-terminal fragment of NCAM2 that comprises the intracellular domain and a small portion of NCAM2's extracellular domain, associates with BACE1. This association is not affected in cells with inhibited endocytosis, indicating that the interaction of NCAM2 and BACE1 precedes the targeting of BACE1 from the cell surface to endosomes. In neurons and CHO cells, this fragment and BACE1 co-localize in Rab11-positive endosomes. Overexpression of full-length NCAM2 or a recombinant NCAM2 fragment containing the transmembrane and intracellular domains but lacking the extracellular domain leads to an increase in BACE1 levels in these organelles. In NCAM2-deficient neurons, the levels of BACE1 are increased at the cell surface and reduced in intracellular organelles. These effects are correlated with increased levels of the soluble extracellular domain of BACE1 in the brains of NCAM2-deficient mice, suggesting increased shedding of BACE1 from the cell surface. Of note, shedding of the extracellular domain of Sez6, a protein cleaved exclusively by BACE1, is reduced in NCAM2-deficient animals. These results indicate that the BACE1-generated fragment of NCAM2 regulates BACE1 activity by promoting the targeting of BACE1 to Rab11-positive endosomes.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Cricetinae , Cricetulus , Endossomos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo
3.
Cell Mol Life Sci ; 78(1): 93-116, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32613283

RESUMO

The success of investigations on the structure and function of the genome (genomics) has been paralleled by an equally awesome progress in the analysis of protein structure and function (proteomics). We propose that the investigation of carbohydrate structures that go beyond a cell's metabolism is a rapidly developing frontier in our expanding knowledge on the structure and function of carbohydrates (glycomics). No other functional system appears to be suited as well as the nervous system to study the functions of glycans, which had been originally characterized outside the nervous system. In this review, we describe the multiple studies on the functions of LewisX, the human natural killer cell antigen-1 (HNK-1), as well as oligomannosidic and sialic (neuraminic) acids. We attempt to show the sophistication of these structures in ontogenetic development, synaptic function and plasticity, and recovery from trauma, with a view on neurodegeneration and possibilities to ameliorate deterioration. In view of clinical applications, we emphasize the need for glycomimetic small organic compounds which surpass the usefulness of natural glycans in that they are metabolically more stable, more parsimonious to synthesize or isolate, and more advantageous for therapy, since many of them pass the blood brain barrier and are drug-approved for treatments other than those in the nervous system, thus allowing a more ready access for application in neurological diseases. We describe the isolation of such mimetic compounds using not only Western NIH, but also traditional Chinese medical libraries. With this review, we hope to deepen the interests in this exciting field.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Sistema Nervoso/metabolismo , Antígenos CD57/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Antígenos CD15/metabolismo , Regeneração Nervosa , Sistema Nervoso/crescimento & desenvolvimento , Plasticidade Neuronal , Oligossacarídeos/metabolismo , Ácidos Siálicos/metabolismo
4.
Cereb Cortex ; 29(4): 1439-1459, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29522129

RESUMO

The neural cell adhesion molecule 2 (NCAM2) is encoded by a gene on chromosome 21 in humans. NCAM2 accumulates in synapses, but its role in regulation of synapse formation remains poorly understood. We demonstrate that an increase in NCAM2 levels results in increased instability of dendritic protrusions and reduced conversion of protrusions to dendritic spines in mouse cortical neurons. NCAM2 overexpression induces an increase in the frequency of submembrane Ca2+ spikes localized in individual dendritic protrusions and promotes propagation of submembrane Ca2+ spikes over segments of dendrites or the whole dendritic tree. NCAM2-dependent submembrane Ca2+ spikes are L-type voltage-gated Ca2+ channel-dependent, and their propagation but not initiation depends on the c-Src protein tyrosine kinase. Inhibition of initiation or propagation of NCAM2-dependent submembrane Ca2+ spikes reduces the NCAM2-dependent instability of dendritic protrusions. Synaptic boutons formed on dendrites of neurons with elevated NCAM2 expression are enriched in the protein marker of immature synapses GAP43, and the number of boutons with mature activity-dependent synaptic vesicle recycling is reduced. Our results indicate that synapse maturation is inhibited in NCAM2-overexpressing neurons and suggest that changes in NCAM2 levels and altered submembrane Ca2+ dynamics can cause defects in synapse maturation in Down syndrome and other brain disorders associated with abnormal NCAM2 expression.


Assuntos
Encéfalo/fisiologia , Proteína Tirosina Quinase CSK/fisiologia , Sinalização do Cálcio , Dendritos/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Sinapses/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Cultura Primária de Células
5.
Genomics ; 111(6): 1676-1686, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30465913

RESUMO

Long term potentiation (LTP) is a form of synaptic plasticity. In the present study LTP was induced via activation of synaptic NMDA receptors in primary hippocampal neuron cultures from neonate mice and RNA was isolated for RNA sequencing at 20 min following LTP induction. RNA sequencing and differential expression testing was performed to determine the identity and abundance of protein-coding and non-coding RNAs in control and LTP induced neuron cultures. We show that expression levels of a small group of transcripts encoding proteins involved in negative regulation of gene expression (Adcyap1, Id3), protein translation (Rpl22L1), extracellular structure organization (Bgn), intracellular signalling (Ppm1H, Ntsr2, Cldn10) and protein citrullination (PAD2) are downregulated in the stimulated neurons. Our results suggest that the early stages of LTP are accompanied by the remodelling of the biosynthetic machinery, interactions with the extracellular matrix and intracellular signalling pathways at the transcriptional level.


Assuntos
Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Sinapses/metabolismo , Transcriptoma/fisiologia , Animais , Feminino , Regulação da Expressão Gênica , Hipocampo/citologia , Masculino , Camundongos , Neurônios/citologia , Receptores de N-Metil-D-Aspartato/genética , Sinapses/genética
6.
J Cell Sci ; 128(15): 2816-29, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101351

RESUMO

The neural cell adhesion molecule (NCAM, also known as NCAM1) is important during neural development, because it contributes to neurite outgrowth in response to its ligands at the cell surface. In the adult brain, NCAM is involved in regulating synaptic plasticity. The molecular mechanisms underlying delivery of NCAM to the neuronal cell surface remain poorly understood. We used a protein macroarray and identified the kinesin light chain 1 (KLC1), a component of the kinesin-1 motor protein, as a binding partner of the intracellular domains of the two transmembrane isoforms of NCAM, NCAM140 and NCAM180. KLC1 binds to amino acids CGKAGPGA within the intracellular domain of NCAM and colocalizes with kinesin-1 in the Golgi compartment. Delivery of NCAM180 to the cell surface is increased in CHO cells and neurons co-transfected with kinesin-1. We further demonstrate that the p21-activated kinase 1 (PAK1) competes with KLC1 for binding to the intracellular domain of NCAM and contributes to the regulation of the membrane insertion of NCAM. Our results indicate that NCAM is delivered to the cell surface through a kinesin-1-mediated transport mechanism in a PAK1-dependent manner.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Cinesinas/metabolismo , Transporte Proteico/fisiologia , Quinases Ativadas por p21/metabolismo , Animais , Células CHO , Moléculas de Adesão Celular Neuronais/genética , Membrana Celular/metabolismo , Cricetulus , Complexo de Golgi/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/fisiologia , Neurônios/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/genética , Interferência de RNA , RNA Interferente Pequeno
7.
J Neurosci ; 35(4): 1739-52, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25632147

RESUMO

Changes in expression of the neural cell adhesion molecule 2 (NCAM2) have been proposed to contribute to neurodevelopmental disorders in humans. The role of NCAM2 in neuronal differentiation remains, however, poorly understood. Using genetically encoded Ca(2+) reporters, we show that clustering of NCAM2 at the cell surface of mouse cortical neurons induces submembrane [Ca(2+)] spikes, which depend on the L-type voltage-dependent Ca(2+) channels (VDCCs) and require activation of the protein tyrosine kinase c-Src. We also demonstrate that clustering of NCAM2 induces L-type VDCC- and c-Src-dependent activation of CaMKII. NCAM2-dependent submembrane [Ca(2+)] spikes colocalize with the bases of filopodia. NCAM2 activation increases the density of filopodia along neurites and neurite branching and outgrowth in an L-type VDCC-, c-Src-, and CaMKII-dependent manner. Our results therefore indicate that NCAM2 promotes the formation of filopodia and neurite branching by inducing Ca(2+) influx and CaMKII activation. Changes in NCAM2 expression in Down syndrome and autistic patients may therefore contribute to abnormal neurite branching observed in these disorders.


Assuntos
Membrana Celular/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/fisiologia , Neurônios/citologia , Pseudópodes/fisiologia , Potenciais de Ação/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Córtex Cerebral/citologia , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Moléculas de Adesão de Célula Nervosa/genética , Neuritos/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Proteínas Tirosina Quinases/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/genética , Pirimidinas/farmacologia
8.
Neurogenetics ; 17(4): 201-210, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27318935

RESUMO

Long-term potentiation (LTP), the persistent strengthening of synapses following high levels of stimulation, is a form of synaptic plasticity that has been studied extensively as a possible mechanism for learning and memory formation. The strengthening of the synapse that occurs during LTP requires cascades of complex molecular processes and the coordinated remodeling of pre-synaptic and post-synaptic neurons. Despite over four decades of research, our understanding of the transcriptional mechanisms and molecular processes underlying LTP remains incomplete. Identification of all the proteins and non-coding RNA transcripts expressed during LTP may provide greater insight into the molecular mechanisms involved in learning and memory formation.


Assuntos
Regulação da Expressão Gênica , Potenciação de Longa Duração/genética , Animais , Encéfalo/metabolismo , Expressão Gênica , Humanos , Memória/fisiologia , Neurônios/metabolismo , RNA não Traduzido/genética
9.
Mol Cancer ; 15(1): 44, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245839

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is an aggressive, locally invasive, cancer elicited by asbestos exposure and almost invariably a fatal diagnosis. To date, we are one of the leading laboratory that compared microRNA expression profiles in MPM and normal mesothelium samples in order to identify dysregulated microRNAs with functional roles in mesothelioma. We interrogated a significant collection of MPM tumors and normal pleural samples in our biobank in search for novel therapeutic targets. METHODS: Utilizing mRNA-microRNA correlations based on differential gene expression using Gene Set Enrichment Analysis (GSEA), we systematically combined publicly available gene expression datasets with our own MPM data in order to identify candidate targets for MPM therapy. RESULTS: We identified enrichment of target binding sites for the miR-17 and miR-30 families in both MPM tumors and cell lines. RT-qPCR revealed that members of both families were significantly downregulated in MPM tumors and cell lines. Interestingly, lower expression of miR-17-5p (P = 0.022) and miR-20a-5p (P = 0.026) was clearly associated with epithelioid histology. We interrogated the predicted targets of these differentially expressed microRNA families in MPM cell lines, and identified KCa1.1, a calcium-activated potassium channel subunit alpha 1 encoded by the KCNMA1 gene, as a target of miR-17-5p. KCa1.1 was overexpressed in MPM cells compared to the (normal) mesothelial line MeT-5A, and was also upregulated in patient tumor samples compared to normal mesothelium. Transfection of MPM cells with a miR-17-5p mimic or KCNMA1-specific siRNAs reduced mRNA expression of KCa1.1 and inhibited MPM cell migration. Similarly, treatment with paxilline, a small molecule inhibitor of KCa1.1, resulted in suppression of MPM cell migration. CONCLUSION: These functional data implicating KCa1.1 in MPM cell migration support our integrative approach using MPM gene expression datasets to identify novel and potentially druggable targets.


Assuntos
Perfilação da Expressão Gênica/métodos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Neoplasias Pleurais/genética , Regiões 3' não Traduzidas , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Mesotelioma Maligno
10.
Neural Plast ; 2016: 6427537, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242933

RESUMO

Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aß, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aß via interaction with the key enzymes involved in Aß formation. Aß-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Humanos
11.
J Neurochem ; 135(4): 830-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26285062

RESUMO

In humans, deletions/mutations in the CHL1/CALL gene are associated with mental retardation and schizophrenia. Juvenile CHL1-deficient (CHL1(-/-) ) mice have been shown to display abnormally high numbers of parvalbumin-expressing (PV(+) ) hippocampal interneurons and, as adults, display behavioral traits observed in neuropsychiatric disorders. Here, we addressed the question whether inhibitory interneurons and synaptic plasticity in the CHL1(-/-) mouse are affected during brain maturation and in adulthood. We found that hippocampal, but not neocortical, PV(+) interneurons were reduced with age in CHL1(-/-) mice, from a surplus of +27% at 1 month to a deficit of -20% in adulthood compared with wild-type littermates. This loss occurred during brain maturation, correlating with microgliosis and enhanced interleukin-6 expression. In parallel with the loss of PV(+) interneurons, the inhibitory input to adult CA1 pyramidal cells was reduced and a deficit in short- and long-term potentiation developed at CA3-CA1 excitatory synapses between 2 and 9 months of age in CHL1(-/-) mice. This deficit could be abrogated by a GABAA receptor agonist. We propose that region-specific aberrant GABAergic synaptic connectivity resulting from the mutation and a subsequently enhanced synaptic elimination during brain maturation lead to microgliosis, increase in pro-inflammatory cytokine levels, loss of interneurons, and impaired synaptic plasticity. Close homolog of L1-deficient (CHL1(-/-) ) mice have abnormally high numbers of parvalbumin (PV)-expressing hippocampal interneurons in juvenile animals, but in adult animals a loss of these cells is observed. This loss correlates with an increased density of microglia (M), enhanced interleukin-6 (IL6) production and a deficit in short- and long-term potentiation at CA3-CA1 excitatory synapses. Furthermore, adult CHL1(-/-) mice display behavioral traits similar to those observed in neuropsychiatric disorders of humans.


Assuntos
Envelhecimento , Moléculas de Adesão Celular/deficiência , Regulação da Expressão Gênica/genética , Hipocampo/citologia , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular/genética , Cerebelo , Ensaio de Imunoadsorção Enzimática , Potenciais Pós-Sinápticos Excitadores/genética , Técnicas In Vitro , Interleucina-3/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica , Técnicas de Patch-Clamp , Fosfopiruvato Hidratase/metabolismo , Proteínas S100/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura
12.
Biochem J ; 464(1): 145-56, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25083612

RESUMO

Glycogen synthase kinase 3 (GSK3) is essential for normal development and function of the central nervous system. It is especially important for regulating neurotransmission, although the downstream substrates mediating this function are not yet clear. In the present paper, we report the lipid kinase phosphatidylinositol 4-kinase II α (PI4KIIα) is a novel substrate of GSK3 that regulates trafficking and cell-surface expression of neurotransmitter receptors in neurons. GSK3 phosphorylates two distinct sites in the N-terminus of PI4KIIα (Ser5 and Ser47), promoting binding to the adaptor protein 3 (AP-3) complex for trafficking to the lysosome to be degraded. Blocking phosphorylation reduces trafficking to the lysosome, stabilizing PI4KIIα and its cargo proteins for redistribution throughout the cell. Importantly, a reduction in PI4KIIα expression or phosphorylation increases α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression at the surface of hippocampal neurons. These studies implicate signalling between GSK3 and PI4KIIα as a novel regulator of vesicular trafficking and neurotransmission in the brain.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Lisossomos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Vesículas Transportadoras/enzimologia , Animais , Transporte Biológico/fisiologia , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley
13.
J Neurosci ; 33(2): 790-803, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303955

RESUMO

The Neural cell adhesion molecule (NCAM) plays an important role in regulation of nervous system development. To expand our understanding of the molecular mechanisms via which NCAM influences differentiation of neurons, we used a yeast two-hybrid screening to search for new binding partners of NCAM and identified p21-activated kinase 1 (Pak1). We show that NCAM interacts with Pak1 in growth cones of neurons. The autophosphorylation and activity of Pak1 were enhanced when isolated growth cones were incubated with NCAM function triggering antibodies, which mimic the interaction between NCAM and its extracellular ligands. The association of Pak1 with cell membranes, the efficiency of Pak1 binding to its activators, and Pak1 activity were inhibited in brains of NCAM-deficient mice. NCAM-dependent Pak1 activation was abolished after lipid raft disruption, suggesting that NCAM promotes Pak1 activation in the lipid raft environment. Phosphorylation of the downstream Pak1 effectors LIMK1 and cofilin was reduced in growth cones from NCAM-deficient neurons, which was accompanied by decreased levels of filamentous actin and inhibited filopodium mobility in the growth cones. Dominant-negative Pak1 inhibited and constitutively active Pak1 enhanced the ability of neurons to increase neurite outgrowth in response to the extracellular ligands of NCAM. Our combined observations thus indicate that NCAM activates Pak1 to drive actin polymerization to promote neuronal differentiation.


Assuntos
Moléculas de Adesão de Célula Nervosa/fisiologia , Transdução de Sinais/fisiologia , Quinases Ativadas por p21/fisiologia , Actinas/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Química Encefálica , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , DNA/genética , Feminino , Cones de Crescimento/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Imunoprecipitação , Masculino , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/efeitos dos fármacos , Fosforilação , Ratos , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Proteína cdc42 de Ligação ao GTP/genética , Quinases Ativadas por p21/genética
14.
J Neurosci ; 33(42): 16828-45, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133283

RESUMO

Newly formed synapses undergo maturation during ontogenetic development via mechanisms that remain poorly understood. We show that maturation of the presynaptic endocytotic machinery in CNS neurons requires substitution of the adaptor protein 3 (AP-3) with AP-2 at the presynaptic plasma membrane. In mature synapses, AP-2 associates with the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes binding of AP-2 over binding of AP-3 to presynaptic membranes, thus favoring the substitution of AP-3 for AP-2 during formation of mature synapses. The presynaptic endocytotic machinery remains immature in adult NCAM-deficient (NCAM-/-) mice accumulating AP-3 instead of AP-2 and its partner protein AP180 in synaptic membranes and vesicles. NCAM deficiency or disruption of the NCAM/AP-2 complex in wild-type (NCAM+/+) neurons by overexpression of AP-2 binding-defective mutant NCAM interferes with efficient retrieval of the synaptic vesicle v-SNARE synaptobrevin 2. Abnormalities in synaptic vesicle endocytosis and recycling may thus contribute to neurological disorders associated with mutations in NCAM.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Complexo 3 de Proteínas Adaptadoras/metabolismo , Endocitose/fisiologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 3 de Proteínas Adaptadoras/genética , Animais , Células CHO , Cricetulus , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/genética , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
15.
J Biol Chem ; 287(53): 44447-63, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23144456

RESUMO

CHL1 plays a dual role by either promoting or inhibiting neuritogenesis. We report here that neuritogenesis-promoting ligand-dependent cell surface clustering of CHL1 induces palmitoylation and lipid raft-dependent endocytosis of CHL1. We identify ßII spectrin as a binding partner of CHL1, and we show that partial disruption of the complex between CHL1 and ßII spectrin accompanies CHL1 endocytosis. Inhibition of the association of CHL1 with lipid rafts by pharmacological disruption of lipid rafts or by mutation of cysteine 1102 within the intracellular domain of CHL1 reduces endocytosis of CHL1. Endocytosis of CHL1 is also reduced by nifedipine, an inhibitor of the L-type voltage-dependent Ca(2+) channels. CHL1-dependent neurite outgrowth is reduced by inhibitors of lipid raft assembly, inhibitors of voltage-dependent Ca(2+) channels, and overexpression of CHL1 with mutated cysteine Cys-1102. Our results suggest that ligand-induced and lipid raft-dependent regulation of CHL1 adhesion via Ca(2+)-dependent remodeling of the CHL1-ßII spectrin complex and CHL1 endocytosis are required for CHL1-dependent neurite outgrowth.


Assuntos
Moléculas de Adesão Celular/metabolismo , Endocitose , Lipídeos de Membrana/metabolismo , Neuritos/metabolismo , Neurogênese , Neurônios/citologia , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Lipoilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo
16.
Cell Commun Signal ; 11: 94, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24330678

RESUMO

Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.


Assuntos
Sinalização do Cálcio , Moléculas de Adesão Celular/fisiologia , Animais , Cálcio/fisiologia , Canais de Cálcio/fisiologia , Adesão Celular/fisiologia , Neurônios
17.
Mol Cell Neurosci ; 50(2): 169-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22503709

RESUMO

The neural cell adhesion molecule L1 (L1CAM) promotes neurite outgrowth via mechanisms that are not completely understood, but are known to involve the cytoskeleton. Here, we show that L1 binds directly to the microtubule associated protein 2c (MAP2c). This isoform of MAP2 is predominantly expressed in developing neurons. We found that the mRNA and protein levels of MAP2c, but not of MAP2a/b, are reduced in brains of young adult L1-deficient transgenic mice. We show via ELISA, that MAP2c, but not MAP2a/b, binds directly to the intracellular domain of L1. Remarkably, all these MAP2 isoforms co-immunoprecipitate with L1, suggesting that MAP2a/b associates with L1 via intermediate binding partners. The expression levels of MAP2a/b/c correlate with those of L1 in different brain regions of early postnatal mice, while expression levels of heat shock cognate protein 70 (Hsc70) or actin do not. L1 enhances the expression of MAP2a/b/c in cultured hippocampal neurons depending on activation of the mitogen-activated protein kinase (MAPK) pathway. Deficiency in both L1 and MAP2a/b/c expression results in reduced neurite outgrowth in vitro. We propose that the L1-triggered increase in MAP2a/b/c expression is required to promote neurite outgrowth.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Heterozigoto , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/biossíntese , Molécula L1 de Adesão de Célula Nervosa/genética , Neuritos/enzimologia , Neuritos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/metabolismo
18.
J Neurosci ; 31(10): 3522-35, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21389209

RESUMO

The exocyst complex is an essential regulator of polarized exocytosis involved in morphogenesis of neurons. We show that this complex binds to the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes FGF receptor-mediated phosphorylation of two tyrosine residues in the sec8 subunit of the exocyst complex and is required for efficient recruitment of the exocyst complex to growth cones. NCAM at the surface of growth cones induces Ca(2+)-dependent vesicle exocytosis, which is blocked by an inhibitor of L-type voltage-dependent Ca(2+) channels and tetanus toxin. Preferential exocytosis in growth cones underlying neurite outgrowth is inhibited in NCAM-deficient neurons as well as in neurons transfected with phosphorylation-deficient sec8 and dominant-negative peptides derived from the intracellular domain of NCAM. Thus, we reveal a novel role for a cell adhesion molecule in that it regulates addition of the new membrane to the cell surface of growth cones in developing neurons.


Assuntos
Exocitose/fisiologia , Cones de Crescimento/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/citologia , Fosforilação
19.
J Biol Chem ; 286(26): 23397-406, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21550975

RESUMO

Homeostatic mechanisms maintaining high levels of adhesion molecules in synapses over prolonged periods of time remain incompletely understood. We used fluorescence recovery after photobleaching experiments to analyze the steady state turnover of the immobile pool of green fluorescent protein-labeled NCAM180, the largest postsynaptically accumulating isoform of the neural cell adhesion molecule (NCAM). We show that there is a continuous flux of NCAM180 to the postsynaptic membrane from nonsynaptic regions of dendrites by diffusion. In the postsynaptic membrane, the newly delivered NCAM180 slowly intermixes with the immobilized pool of NCAM180. Preferential immobilization and accumulation of NCAM180 in the postsynaptic membrane is reduced after disruption of the association of NCAM180 with the spectrin cytoskeleton and in the absence of the homophilic interactions of NCAM180 in synapses. Our observations indicate that the homophilic interactions and binding to the cytoskeleton promote immobilization of NCAM180 and its accumulation in the postsynaptic membrane. Flux of NCAM180 from extrasynaptic regions and its slow intermixture with the immobile pool of NCAM180 in the postsynaptic membrane may be important for the continuous homeostatic replenishment of NCAM180 protein at synaptic contacts without compromising the long term synaptic contact stability.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Membranas Sinápticas/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espectrina/genética , Espectrina/metabolismo , Membranas Sinápticas/genética
20.
Cereb Cortex ; 21(10): 2217-32, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21339376

RESUMO

Mechanisms inducing perforation of the postsynaptic density (PSD) are poorly understood. We show that neural cell adhesion molecule- deficient (NCAM-/-) hippocampal neurons have an abnormally high percentage of synapses with perforated PSDs. The percentage of synapses with perforated PSDs is also increased in wild-type (NCAM+/+) neurons after the disruption of the NCAM/spectrin complex indicating that the NCAM-assembled spectrin cytoskeleton maintains the structural integrity of PSDs. We demonstrate that PSD perforations contain endocytic zones involved in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Induction of long-term potentiation in NCAM+/+ neurons accompanied by insertion of AMPAR into the neuronal cell surface is subsequently followed by formation of perforated synapses and AMPAR endocytosis suggesting that perforation of PSDs is important for membrane homeostasis in activated synapses. In NCAM-/- or NCAM+/+ neurons with dissociated spectrin meshwork, AMPAR endocytosis is enhanced under conditions of basal activity. An abnormally high rate of postsynaptic membrane endocytosis may thus contribute to brain pathologies associated with mutations in NCAM or spectrin.


Assuntos
Endocitose , Moléculas de Adesão de Célula Nervosa/antagonistas & inibidores , Densidade Pós-Sináptica/patologia , Espectrina/antagonistas & inibidores , Sinapses/patologia , Animais , Células Cultivadas , Endocitose/fisiologia , Hipocampo/patologia , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/fisiologia , Densidade Pós-Sináptica/ultraestrutura , Multimerização Proteica/fisiologia , Espectrina/fisiologia , Sinapses/ultraestrutura , Potenciais Sinápticos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA