Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 119(4): 1720-1736, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923651

RESUMO

Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a disease of durum and common wheat initiated by the recognition of pathogen-produced necrotrophic effectors (NEs) by specific wheat genes. The wheat gene Snn1 was previously cloned, and it encodes a wall-associated kinase that directly interacts with the NE SnTox1 leading to programmed cell death and ultimately the development of SNB. Here, sequence analysis of Snn1 from 114 accessions including diploid, tetraploid, and hexaploid wheat species revealed that some wheat lines possess two copies of Snn1 (designated Snn1-B1 and Snn1-B2) approximately 120 kb apart. Snn1-B2 evolved relatively recently as a paralog of Snn1-B1, and both genes have undergone diversifying selection. Three point mutations associated with the formation of the first SnTox1-sensitive Snn1-B1 allele from a primitive wild wheat were identified. Four subsequent and independent SNPs, three in Snn1-B1 and one in Snn1-B2, converted the sensitive alleles to insensitive forms. Protein modeling indicated these four mutations could abolish Snn1-SnTox1 compatibility either through destabilization of the Snn1 protein or direct disruption of the protein-protein interaction. A high-throughput marker was developed for the absent allele of Snn1, and it was 100% accurate at predicting SnTox1-insensitive lines in both durum and spring wheat. Results of this study increase our understanding of the evolution, diversity, and function of Snn1-B1 and Snn1-B2 genes and will be useful for marker-assisted elimination of these genes for better host resistance.


Assuntos
Ascomicetos , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Evolução Molecular , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único , Suscetibilidade a Doenças , Alelos , Resistência à Doença/genética
2.
Mol Breed ; 43(7): 54, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37337566

RESUMO

Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01400-5.

3.
Phytopathology ; 113(10): 1967-1978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37199466

RESUMO

Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr), is an important disease of durum and common wheat worldwide. Compared with common wheat, less is known about the genetics and molecular basis of tan spot resistance in durum wheat. We evaluated 510 durum lines from the Global Durum Wheat Panel (GDP) for sensitivity to the necrotrophic effectors (NEs) Ptr ToxA and Ptr ToxB and for reaction to Ptr isolates representing races 1 to 5. Overall, susceptible durum lines were most prevalent in South Asia, the Middle East, and North Africa. Genome-wide association analysis showed that the resistance locus Tsr7 was significantly associated with tan spot caused by races 2 and 3, but not races 1, 4, or 5. The NE sensitivity genes Tsc1 and Tsc2 were associated with susceptibility to Ptr ToxC- and Ptr ToxB-producing isolates, respectively, but Tsn1 was not associated with tan spot caused by Ptr ToxA-producing isolates, which further validates that the Tsn1-Ptr ToxA interaction does not play a significant role in tan spot development in durum. A unique locus on chromosome arm 2AS was associated with tan spot caused by race 4, a race once considered avirulent. A novel trait characterized by expanding chlorosis leading to increased disease severity caused by the Ptr ToxB-producing race 5 isolate DW5 was identified, and this trait was governed by a locus on chromosome 5B. We recommend that durum breeders select resistance alleles at the Tsr7, Tsc1, Tsc2, and the chromosome 2AS loci to obtain broad resistance to tan spot.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno/genética , Triticum/genética , Triticum/microbiologia
4.
Plant J ; 106(3): 720-732, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33576059

RESUMO

Septoria nodorum blotch (SNB), a disease caused by the necrotrophic fungal pathogen Parastagonospora nodorum, is a threat to wheat (Triticum aestivum) production worldwide. Multiple inverse gene-for-gene interactions involving the recognition of necrotrophic effectors (NEs) by wheat sensitivity genes play major roles in causing SNB. One interaction involves the wheat gene Snn3 and the P. nodorum NE SnTox3. Here, we used a map-based strategy to clone the Snn3-D1 gene from Aegilops tauschii, the D-genome progenitor of common wheat. Snn3-D1 contained protein kinase and major sperm protein domains, both of which were essential for function as confirmed by mutagenesis. As opposed to other characterized interactions in this pathosystem, a compatible Snn3-D1-SnTox3 interaction was light-independent, and Snn3-D1 transcriptional expression was downregulated by light and upregulated by darkness. Snn3-D1 likely emerged in Ae. tauschii due to an approximately 218-kb insertion that occurred along the west bank of the Caspian Sea. The identification of this new class of NE sensitivity genes combined with the previously cloned sensitivity genes demonstrates that P. nodorum can take advantage of diverse host targets to trigger SNB susceptibility in wheat.


Assuntos
Ascomicetos/metabolismo , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Triticum/microbiologia , Aegilops/microbiologia , Suscetibilidade a Doenças/microbiologia , Genes de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Pólen/enzimologia , Pólen/genética , Proteínas Quinases/genética , Triticum/genética , Triticum/metabolismo
5.
Mycologia ; 103(1): 94-100, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20943568

RESUMO

During routine wheat disease surveys in Hungary in 2007 Alternaria was isolated from leaf samples collected in Debrecen. Macro- and micro-morphological examinations and ITS sequence analyses indicated that the isolates represented a new Alternaria species, which we described as A. hungarica. The usually solitary conidia of A. hungarica resemble those of A. mouchaccae and A. molesta. However growth and sporulation pattern are more like those of A. geniostomatis and A. soliaridae. Phylogenetic analysis of ITS sequences indicated that this new species can be distinguished from all other examined Alternaria and Embellisia species. Pathogenicity tests indicated that A. hungarica can be considered a minor pathogen of wheat.


Assuntos
Alternaria/isolamento & purificação , Doenças das Plantas/microbiologia , Triticum/microbiologia , Alternaria/genética , Alternaria/ultraestrutura , Sequência de Bases , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Hungria , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Alinhamento de Sequência
6.
Front Plant Sci ; 9: 1829, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619402

RESUMO

Synthetic hexaploid wheat (SHW) can serve as a bridge for the transfer of useful genes from Aegilops tauschii and tetraploid wheat (Triticum turgidum) into common wheat (T. aestivum). The objective of this study was to evaluate 149 SHW lines and their 74 tetraploid parents for their genetic diversity, breeding values and inter-genomic interactions for resistance to Fusarium head blight (FHB). The genetic diversity analysis was performed based on the population structure established using 4,674 and 3,330 polymorphic SNP markers among the SHW lines and tetraploid parents, respectively. The results showed that all T. carthlicum and most T. dicoccum accessions formed different clusters and subpopulations, respectively, whereas all the T. durum, T. polonicum, T. turgidum, and T. turanicum accessions were clustered together, suggesting that T. durum was more closely related to T. polonicum, T. turgidum, and T. turanicum than to T. dicoccum. The genetic diversity of the SHW lines mainly reflected that of the tetraploid parents. The SHW lines and their tetraploid parents were evaluated for reactions to FHB in two greenhouse seasons and at two field nurseries for 2 years. As expected, most of the SHW lines were more resistant than their tetraploid parents in all environments. The FHB severities of the SHW lines varied greatly depending on the Ae. tauschii and tetraploid genotypes involved. Most of the SHW lines with a high level of FHB resistance were generally derived from the tetraploid accessions with a high level of FHB resistance. Among the 149 SHW lines, 140 were developed by using three Ae. tauschii accessions CIae 26, PI 268210, and RL 5286. These SHW lines showed FHB severities reduced by 21.7%, 17.3%, and 11.5%, respectively, with an average reduction of 18.3%, as compared to the tetraploid parents, suggesting that the D genome may play a major role in reducing disease severity in the SHW lines. Thirteen SHW lines consistently showed a high level of FHB resistance compared to the resistant check, Sumai 3, in each environment. These SHW lines will be useful for the development of FHB-resistant wheat germplasm and populations for discovery of novel FHB resistance genes.

7.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724063

RESUMO

The USDA-ARS National Small Grains Collection (NSGC) maintains germplasm representing global diversity of small grains and their wild relatives. To evaluate the utility of the NSGC durum wheat ( L. ssp. ) accessions, we assessed genetic diversity and linkage disequilibrium (LD) patterns in a durum core subset containing 429 lines with spring growth habit originating from 64 countries worldwide. Genetic diversity estimated using wheat single-nucleotide polymorphism (SNP) markers showed considerable diversity captured in this collection. Average LD decayed over a genetic distance to within 3 cM at = 0.2, with a fast LD decay for markers linked at >5 cM. We evaluated accessions for resistance to wheat stem rust, caused by a fungal pathogen, Pers. Pers. f. sp. Eriks. and E. Henn (), using races from both eastern Africa and North America, at seedling and adult plant stages. Five accessions were identified as resistant to all stem rust pathogen races evaluated. Genome-wide association analysis detected 17 significant associations at the seedling stage with nine likely corresponding to , , and and the remaining potentially being novel genes located on six chromosomes. A higher frequency of resistant accessions was found at the adult plant stage than at the seedling stage. However, few significant associations were detected possibly a result of strong G × E interactions not properly accounted for in the mixed model. Nonetheless, the resistant accessions identified in this study should provide wheat breeders with valuable resources for improving stem rust resistance.


Assuntos
Basidiomycota/patogenicidade , Variação Genética , Triticum/genética , Triticum/microbiologia , Cromossomos de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Triticum/imunologia
8.
Pest Manag Sci ; 69(11): 1216-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23471588

RESUMO

BACKGROUND: Prothioconazole and tebuconazole are among the most effective fungicides against Fusarium head blight (FHB) of wheat (Triticum aestivum L.). The translocation between the ears and the flag leaves and the kinetics of degradation may influence field efficacy of these active ingredients (AIs). RESULTS: In greenhouse experiments, only traces (<1%) of the total AI content translocated from the flag leaves to the ears, and a maximum of 3.55% from the ears to the flag leaves. From the treated to the non-treated side of the ears, 3.2-15.9% of the AI translocated, depending on cultivar, AI and time. In field experiments, the degradation kinetics in the first 8 days after treatment revealed a higher velocity in the flag leaf blades than in the ears, although both were dependent on the type of cultivar. The fungicide treatment resulted in 42.6-100% decreases in FHB traits. CONCLUSIONS: There is no effective translocation of these AIs, only moderate redistribution in the ears, which can be decisive from the aspect of FHB management. The degradation of prothioconazole was faster than that of tebuconazole. Cultivar and environmental effects influenced the degradation kinetics of these AIs, but a high level of protection against FHB was maintained.


Assuntos
Fungicidas Industriais/química , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Triazóis/química , Triticum/química , Triticum/crescimento & desenvolvimento , Fungicidas Industriais/metabolismo , Cinética , Controle de Pragas , Triazóis/metabolismo , Triticum/metabolismo
9.
Toxins (Basel) ; 3(11): 1453-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22174980

RESUMO

Fungicide application is a key factor in the control of mycotoxin contamination in the harvested wheat grain. However, the practical results are often disappointing. In 2000-2004, 2006-2008 and 2007 and 2008, three experiments were made to test the efficacy of fungicide control on Fusarium Head Blight (FHB) in wheat and to find ways to improve control of the disease and toxin contamination. In a testing system we have used for 20 years, tebuconazole and tebuconazole + prothioconazole fungicides regularly reduced symptoms by about 80% with a correlating reduction in toxin contamination. Averages across the years normally show a correlation of r = 0.90 or higher. The stability differences (measured by the stability index) between the poorest and the best fungicides are about 10 or more times, differing slightly in mycotoxin accumulation, FHB index (severity) and Fusarium damaged kernels (FDK). The weak fungicides, like carbendazim, were effective only when no epidemic occurred or epidemic severity was at a very low level. Similar fungicide effects were seen on wheat cultivars which varied in FHB resistance. In this study, we found three fold differences in susceptibility to FHB between highly susceptible and moderately resistant cultivars when treated with fungicides. In the moderately resistant cultivars, about 50% of the fungicide treatments lowered the DON level below the regulatory limit. In the most susceptible cultivars, all fungicides failed to reduce mycotoxin levels low enough for grain acceptance, in spite of the fact that disease was significantly reduced. The results correlated well with the results of the large-scale field tests of fungicide application at the time of natural infection. The Turbo FloodJet nozzle reduced FHB incidence and DON contamination when compared to the TeeJet XR nozzle. Overall, the data suggest that significant decreases in FHB incidence and deoxynivalenol contamination in field situations are possible with proper fungicide applications. Additionally, small plot tests can be used to evaluate the quality of the field disease and toxin production.


Assuntos
Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Doenças das Plantas/terapia , Tricotecenos/metabolismo , Triticum/microbiologia , Farmacorresistência Fúngica , Contaminação de Alimentos/análise , Fusarium/fisiologia , Controle de Pragas/instrumentação , Controle de Pragas/métodos , Doenças das Plantas/microbiologia , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA