Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1862(3): 745-751, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29066220

RESUMO

Metastasis formation is a complex and not entirely understood process. The poorest prognosis and the most feared complications are associated to brain metastases. Melanoma derived brain metastases show the highest prevalence. Due to the lack of classical lymphatic drainage, in the process of brain metastases formation the haematogenous route is of primordial importance. The first and crucial step in this multistep process is the establishment of firm adhesion between the blood travelling melanoma cells and the tightly connected layer of the endothelium, which is the fundamental structure of the blood-brain barrier. This study compares the de-adhesion properties and dynamics of three melanoma cells types (WM35, A2058 and A375) to a confluent layer of brain micro-capillary endothelial cells. Cell type dependent adhesion characteristics are presented, pointing towards the existence of metastatic potential related nanomechanical aspects. Apparent mechanical properties such as elasticity, maximal adhesion force, number, size and distance of individual rupture events showed altered values pointing towards cell type dependent aspects. Our results underline the importance of mechanical details in case of intercellular interactions. Nevertheless, it suggests that in adequate circumstances elastic and adhesive characterizations might be used as biomarkers.


Assuntos
Encéfalo/patologia , Endotélio/patologia , Melanoma/patologia , Metástase Neoplásica/patologia , Adulto , Barreira Hematoencefálica , Adesão Celular , Linhagem Celular Tumoral , Módulo de Elasticidade , Elasticidade , Humanos , Metástase Linfática/patologia , Masculino , Microscopia de Força Atômica , Invasividade Neoplásica , Estresse Mecânico
2.
J Mol Recognit ; 30(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28008676

RESUMO

The most life-threatening aspect of cancer is metastasis; cancer patient mortality is mainly due to metastasis. Among all metastases, presence of brain metastasis is one with the poorest prognosis; the median survival time can be counted in months. Therefore, prevention or decreasing their incidence would be highly desired both by patients and physicians. Metastatic cells invading the brain must breach the cerebral vasculature, primarily the blood-brain barrier. The key step in this process is the establishment of firm adhesion between the cancer cell and the cerebral endothelial layer. Using the atomic force microscope, a high-resolution force spectrograph, our aim was to explore the connections among the cell morphology, cellular mechanics, and biological function in the process of transendothelial migration of metastatic cancer cells. By immobilization of a melanoma cell to an atomic force microscope's cantilever, intercellular adhesion was directly measured at quasi-physiological conditions. Hereby, we present our latest results by using this melanoma-decorated probe. Binding characteristics to a confluent layer of brain endothelial cells was directly measured by means of single-cell force spectroscopy. Adhesion dynamics and strength were characterized, and we present data about spatial distribution of elasticity and detachment strength. These results highlight the importance of cellular mechanics in brain metastasis formation and emphasize the enormous potential toward exploration of intercellular dynamic-related processes.


Assuntos
Células Endoteliais/citologia , Melanoma , Análise de Célula Única/métodos , Adulto , Fenômenos Biomecânicos , Barreira Hematoencefálica , Encéfalo/citologia , Encéfalo/patologia , Adesão Celular , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Humanos , Masculino , Microscopia de Força Atômica
3.
J Oral Pathol Med ; 46(4): 259-266, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27598726

RESUMO

BACKGROUND: Head and neck cancers comprise the sixth most common cancer type worldwide. One of the most remarkable malignancies of the head and neck is the cancer of the nasopharynx, with a strong metastatic tendency already in the early stage. Besides the conventional pathways of metastasis formation, the information content of exosomes produced by the cancer cells may play a key role in metastatic transformation. The aim of this study was to investigate how stressors alter the characteristic of tumor derived exosomes. METHODS: In our experimental model, we compared the quantity and content of exosomes produced by a nasopharyngeal carcinoma cell line (5-8F) under conventional (chemotherapy) and alternative (Ag-TiO2 -catalyzed reactive oxygen species generation) cytostatic treatment. After isolation, exosomes were identified by atomic force microscopy and quantified with Nanosight NS500 device. MicroRNA content of them was analyzed using SOLiD 5500xl technology. The sequences were annotated in CLC Genomics Workbench version 5.5.1. RESULTS: Beyond the classic chemotherapeutic agent (doxorubicin), Ag-TiO2 in a photo-catalytic process also showed cytostatic activity. Tumor cell damage induced by the cytostatic treatments significantly altered the number of released exosomes and led to the predominance of tumor suppressors in the exosomal miRNA profile. CONCLUSIONS: Our results suggest that the intercellular communication between tumor cells and surrounding stroma cells can be altered by microenvironment which increased quantity of exosomes and diversity of miRNAs in this study. Imbalance of oncogenic and tumor suppressor miRNAs caused by cytostatic treatments may influence the antiproliferative and metastasis inhibitory effect of cytostatic agents.


Assuntos
Exossomos/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Comunicação Celular , Linhagem Celular Tumoral , Citostáticos/farmacologia , Doxorrubicina/farmacologia , Exossomos/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , Neoplasias Nasofaríngeas/patologia , Microambiente Tumoral
4.
Ann Clin Microbiol Antimicrob ; 15(1): 43, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465344

RESUMO

BACKGROUND: Certain legume plants produce a plethora of AMP-like peptides in their symbiotic cells. The cationic subgroup of the nodule-specific cysteine-rich (NCR) peptides has potent antimicrobial activity against gram-negative and gram-positive bacteria as well as unicellular and filamentous fungi. FINDINGS: It was shown by scanning and atomic force microscopies that the cationic peptides NCR335, NCR247 and Polymyxin B (PMB) affect differentially on the surfaces of Sinorhizobium meliloti bacteria. Similarly to PMB, both NCR peptides caused damages of the outer and inner membranes but at different extent and resulted in the loss of membrane potential that could be the primary reason of their antimicrobial activity. CONCLUSIONS: The primary reason for bacterial cell death upon treatment with cationic NCR peptides is the loss of membrane potential.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Sinorhizobium meliloti/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/ultraestrutura , Medicago truncatula/fisiologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Proteínas de Plantas/metabolismo , Polimixina B/farmacologia , Nódulos Radiculares de Plantas/fisiologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/ultraestrutura
5.
Gen Physiol Biophys ; 34(2): 135-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25675389

RESUMO

Antimicrobial peptides are small proteins that exhibit a broad spectrum of antimicrobial activity. Their chemical structure allows them to interact (attach and insert) with membranes. The fine details about this interaction and their mode of action are not fully clarified yet. In order to better understand this mechanism, we have performed in situ atomic force microscopy studies using two types of nodule specific cysteine-rich NCR peptides on Escherichia coli bacteria and on natural purple membrane. On intact bacteria, both NCR247 and NCR335 caused increase in the surface roughness, indicating the damage of the bacterial cell envelope. In case of the tightly packed purple membrane, it is clear that the peptides prefer to disrupt the border of the disks indicating a strong lipid preference of the interaction. These results verify the concept that the first target of NCR peptides is probably the bacterial cell envelope, especially the lipid matrix.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Cisteína/química , Escherichia coli/química , Microscopia de Força Atômica/métodos , Mapeamento de Interação de Proteínas/métodos , Membrana Purpúrea/química , Sítios de Ligação , Ligação Proteica , Estresse Mecânico
6.
Eur Biophys J ; 41(2): 139-45, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22038122

RESUMO

Mechanical parameters play a crucial role in proper cellular functions. This article examines the process of the appearance and breaking of adhesion forces during contact between the confluent cerebral endothelial cell layer and a melanoma cell attached to a tipless cantilever. This adhesion is the initial phase of melanoma transmigration through the endothelial cell layer. Taking the force measurement, if the contact was prolonged for several seconds, a decrease in the load force was observed, which corresponds to stress relaxation of the cells. The dependence of adhesion force and stress relaxation on dwell time showed a saturation-like behavior. These stress relaxation curves could be fitted with the sum of two exponentials, suggesting that two independent processes take place simultaneously. The breakup of the adhesion during the retraction of the cantilever with the attached melanoma cell is not continuous but shows jumps. Between living endothelial and melanoma cells, a minimum jump size of about 20 pN could be determined. The minimum jump is independent of the dwell time and load force. It seems to be the elementary binding force between these two cell types. In case of fixed endothelial cells, the adhesion force was strongly decreased and the jumps disappeared, whereas the stress relaxation did not show considerable change upon fixation.


Assuntos
Encéfalo/citologia , Células Endoteliais/citologia , Melanoma Experimental/patologia , Estresse Mecânico , Animais , Barreira Hematoencefálica/citologia , Adesão Celular , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Elasticidade , Humanos , Camundongos , Fatores de Tempo , Viscosidade
7.
J Mol Recognit ; 24(3): 422-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21504019

RESUMO

The reliable determination of the mechanical properties of a living cell is one of the most important challenges of the atomic force microscopic measurements. In the present study the spatial and temporal dependency of the force measurements on cerebral endothelial cells was investigated. Besides imaging the cells, two different sequences of force measurements were applied: Acquisition of force curves in short time at several points across the cell surface investigating spatial dependence of the elasticity. Acquisition of force curves for long time at a previously determined place, over the cell nucleus, which provides the temporal stability/variation of the measured forces/values. Three different stages of endothelial cell cultures of the hCMEC/D3 cells were used: sub-confluent living, confluent living, and confluent fixed cells. The Young's modulus was calculated from the force curves using the Hertz model and the results were plotted against time or location correspondingly. The rational of using the three stage of culture was to clarify whether the observed effect belongs to the individual cell, to the ensemble of cells or just to some, not living cell component. In case of sub-confluent cells the results revealed a softer nuclear region compared to the periphery, while an attenuated oscillation like fluctuation in time, with a period of about 10-30 min, was observed. Confluent living cells showed similar tendencies to the sub-confluent cells, but the changes were larger and the temporal oscillations had longer period. The spatial dependency of the elasticity on confluent cells was confirmed by force-volume measurement too. In case of fixed cells neither spatial nor temporal differences were observed between the nuclear and peripheral region, however the Young's modulus and the error of the measurement was larger, compared to the sub-confluent living cells.


Assuntos
Células Endoteliais/fisiologia , Microscopia de Força Atômica/métodos , Barreira Hematoencefálica/citologia , Linhagem Celular , Módulo de Elasticidade , Células Endoteliais/citologia , Humanos
8.
J Biomed Biotechnol ; 2011: 670589, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21765635

RESUMO

Indolicidin, a cationic antimicrobial tridecapeptide amide, is rich in proline and tryptophan residues. Its biological activity is intensively studied, but the details how indolicidin interacts with membranes are not fully understood yet. We report here an in situ atomic force microscopic study describing the effect of indolicidin on an artificial supported planar bilayer membrane of dipalmitoyl phosphatidylcholine (DPPC) and on purple membrane of Halobacterium salinarum. Concentration dependent interaction of the peptide and membranes was found in case of DPPC resulting the destruction of the membrane. Purple membrane was much more resistant against indolicidin, probably due to its high protein content. Indolicidin preferred the border of membrane disks, where the lipids are more accessible. These data suggest that the atomic force microscope is a powerful tool in the study of indolicidin-membrane interaction.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análise , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Membrana Purpúrea/efeitos dos fármacos , Membrana Purpúrea/ultraestrutura , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/análise , Peptídeos Catiônicos Antimicrobianos/análise , Relação Dose-Resposta a Droga , Halobacterium salinarum/metabolismo , Bicamadas Lipídicas/análise , Microscopia de Força Atômica/métodos
9.
ACS Appl Mater Interfaces ; 13(33): 39018-39029, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34397215

RESUMO

Targeting nanoparticles as drug delivery platforms is crucial to facilitate their cellular entry. Docking of nanoparticles by targeting ligands on cell membranes is the first step for the initiation of cellular uptake. As a model system, we studied brain microvascular endothelial cells, which form the anatomical basis of the blood-brain barrier, and the tripeptide glutathione, one of the most effective targeting ligands of nanoparticles to cross the blood-brain barrier. To investigate this initial docking step between glutathione and the membrane of living brain endothelial cells, we applied our recently developed innovative optical method. We present a microtool, with a task-specific geometry used as a probe, actuated by multifocus optical tweezers to characterize the adhesion probability and strength of glutathione-coated surfaces to the cell membrane of endothelial cells. The binding probability of the glutathione-coated surface and the adhesion force between the microtool and cell membrane was measured in a novel arrangement: cells were cultured on a vertical polymer wall and the mechanical forces were generated laterally and at the same time, perpendicularly to the plasma membrane. The adhesion force values were also determined with more conventional atomic force microscopy (AFM) measurements using functionalized colloidal probes. The optical trapping-based method was found to be suitable to measure very low adhesion forces (≤ 20 pN) without a high level of noise, which is characteristic for AFM measurements in this range. The holographic optical tweezers-directed functionalized microtools may help characterize the adhesion step of nanoparticles initiating transcytosis and select ligands to target nanoparticles.


Assuntos
Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Glutationa/metabolismo , Nanopartículas/metabolismo , Pinças Ópticas , Fenômenos Biofísicos , Barreira Hematoencefálica/metabolismo , Encéfalo , Adesão Celular , Membrana Celular/ultraestrutura , Células Endoteliais/citologia , Galactosamina/química , Humanos , Ligantes , Microscopia de Força Atômica , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/metabolismo , Propriedades de Superfície , Transcitose
10.
Pharmaceutics ; 12(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645904

RESUMO

Inefficient drug delivery across the blood-brain barrier (BBB) and into target cells in the brain hinders the treatment of neurological diseases. One strategy to increase the brain penetration of drugs is to use vesicular nanoparticles functionalized with multiple ligands of BBB transporters as vehicles. Once within the brain, however, drugs must also be able to reach their therapeutic targets in the different cell types. It is, therefore, favorable if such nanocarriers are designed that can deliver their cargo not only to brain endothelial cells, but to other cell types as well. Here, we show that alanineglutathione dual-targeting of niosomes enhances the delivery of a large protein cargo into cultured cells of the neurovascular unit, namely brain endothelial cells, pericytes, astrocytes and neurons. Furthermore, using metabolic and endocytic inhibitors, we show that the cellular uptake of niosomes is energy-dependent and is partially mediated by endocytosis. Finally, we demonstate the ability of our targeted nanovesicles to deliver their cargo into astroglial cells after crossing the BBB in vitro. These data indicate that dual-labeling of nanoparticles with alanine and glutathione can potentially be exploited to deliver drugs, even biopharmacons, across the BBB and into multiple cell types in the brain.

11.
Front Immunol ; 10: 2459, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681332

RESUMO

Recently, it has been described that programmed cell death protein 1 (PD-1) overexpressing melanoma cells are highly aggressive. However, until now it has not been defined which factors lead to the generation of PD-1 overexpressing subpopulations. Here, we present that melanoma-derived exosomes, conveying oncogenic molecular reprogramming, induce the formation of a melanoma-like, PD-1 overexpressing cell population (mMSCPD-1+) from naïve mesenchymal stem cells (MSCs). Exosomes and mMSCPD-1+ cells induce tumor progression and expression of oncogenic factors in vivo. Finally, we revealed a characteristic, tumorigenic signaling network combining the upregulated molecules (e.g., PD-1, MET, RAF1, BCL2, MTOR) and their upstream exosomal regulating proteins and miRNAs. Our study highlights the complexity of exosomal communication during tumor progression and contributes to the detailed understanding of metastatic processes.


Assuntos
Exossomos/genética , Melanoma/genética , Células-Tronco Mesenquimais/metabolismo , Oncogenes/genética , Receptor de Morte Celular Programada 1/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Células Cultivadas , Progressão da Doença , Exossomos/metabolismo , Exossomos/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos Endogâmicos C57BL , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Receptor de Morte Celular Programada 1/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
12.
Biochem Biophys Rep ; 7: 303-308, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955919

RESUMO

The possibility to directly measure the elasticity of living cell has emerged only in the last few decades. In the present study the elastic properties of two cell lines were followed. Both types are widely used as cell barrier models (e.g. blood-brain barrier). During time resolved measurement of the living cell elasticity a continuous quasi-periodic oscillation of the elastic modulus was observed. Fast Fourier transformation of the signals revealed that a very limited number of three to five Fourier terms fitted the signal in the case of human cerebral endothelial cells. In the case of canine kidney epithelial cells more than 8 Fourier terms did not result a good fit. Calculating the correlation between nucleus and periphery of the signals revealed a higher correlation factor for the endothelial cells compared to the epithelial cells.

13.
Immunol Lett ; 148(1): 34-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22898052

RESUMO

To clarify controversies in the literature of the field, we have purified and characterized B16F1 melanoma cell derived exosomes (mcd-exosomes) then we attempted to dissect their immunological activities. We tested how mcd-exosomes influence CD4+ T cell proliferation induced by bone marrow derived dendritic cells; we quantified NF-κB activation in mature macrophages stimulated with mcd-exosomes, and we compared the cytokine profile of LPS-stimulated, IL-4 induced, and mcd-exosome treated macrophages. We observed that mcd-exosomes helped the maturation of dendritic cells, enhancing T cell proliferation induced by the treated dendritic cells. The exosomes also activated macrophages, as measured by NF-κB activation. The cytokine and chemokine profile of macrophages treated with tumor cell derived exosomes showed marked differences from those induced by either LPS or IL-4, and it suggested that exosomes may play a role in the tumor progression and metastasis formation through supporting tumor immune escape mechanisms.


Assuntos
Células Dendríticas/imunologia , Exossomos/imunologia , Macrófagos/imunologia , Melanoma/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocinas/imunologia , Quimiocinas/metabolismo , Técnicas de Cocultura , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Exossomos/metabolismo , Exossomos/ultraestrutura , Feminino , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , NF-kappa B/imunologia , NF-kappa B/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Langmuir ; 23(15): 8236-42, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17585791

RESUMO

Dipalmitoylphosphatidylcholine (DPPC) bilayer was created on the surface of an exponentially growing poly(glutamic acid)/poly(lysine) (PGA/PLL) layer-by-layer polyelectrolyte film. The lipid bilayer decreased the surface roughness of the polyelectrolyte film. The layer-by-layer construction of the polyelectrolyte film could be continued on the top of the DPPC layer. The lipid bilayer, however, formed a barrier in the interior of the polyelectrolyte film, which blocked the diffusion (a prerequisite for exponential growth) of the polyelectrolytes. Thus, a new growth regime started in the upper part of the polyelectrolyte film, which was added to embed the DPPC bilayer. The structure and the dynamics of the DPPC bilayer on the polyelectrolyte film surface remained similar to that of its hydrated multibilayers, except that the phase transition became wider. In the case of embedded DPPC bilayers, in addition, the phase-transition temperature also decreased. This is the result of interactions with the nonconcerted movements of the barrier-separated lower and higher parts of the polyelectrolyte film. Gramicidin A (GRA) as a model of lipid-soluble peptides and proteins was successfully incorporated into such DPPC films. The DPPC films, either with or without GRA, were remarkably stable; as many heating-cooling cycles to measure phase transition could be carried out without visible alterations as wanted.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Gramicidina/química , Bicamadas Lipídicas/química , Ácido Poliglutâmico/análogos & derivados , Polilisina/análogos & derivados , Temperatura Alta , Transição de Fase , Ácido Poliglutâmico/química , Polilisina/química , Propriedades de Superfície
15.
Eur Biophys J ; 36(2): 113-20, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17115151

RESUMO

Understanding the reaction of living cells in response to different extracellular stimuli, such as hyperosmotic stress, is of primordial importance. Mannitol, a cell-impermeable non-toxic alcohol, has been used successfully for reversible opening of the blood-brain barrier in hyperosmotic concentrations. In this study we analyzed the effect of hyperosmotic mannitol on the shape and surface structure of living cerebral endothelial cells by atomic force microscope imaging technique. Addition of clinically relevant concentrations of mannitol to the culture medium of the confluent cells induced a decrease of about 40% in the observed height of the cells. This change was consistent both at the nuclear and peripheral region of the cells. After mannitol treatment even a close examination of the contact surface between the cells did not reveal gap between them. We could observe the appearance of surface protrusions of about 100 nm. By force measurements the elasticity of the cells were estimated. While the Young's modulus of the control cells appeared to be 8.04 +/- 0.12 kPa, for the mannitol-treated cells it decreased to an estimated value of 0.93 +/- 0.04 kPa which points to large structural changes inside the cell.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Manitol/administração & dosagem , Fluidez de Membrana/efeitos dos fármacos , Microscopia de Força Atômica/métodos , Animais , Encéfalo/citologia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Elasticidade , Células Endoteliais/citologia , Fluidez de Membrana/fisiologia , Pressão Osmótica/efeitos dos fármacos , Ratos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA