Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2216141120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523525

RESUMO

Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.


Assuntos
Proteínas de Caenorhabditis elegans , Sulfeto de Hidrogênio , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade , Sulfetos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fatores de Transcrição GATA/metabolismo
2.
FASEB J ; 37(4): e22851, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36935171

RESUMO

Sarcopenia is a geriatric syndrome characterized by an age-related decline in skeletal muscle mass and strength. Here, we show that suppression of mitochondrial calcium uniporter (MCU)-mediated Ca2+ influx into mitochondria in the body wall muscles of the nematode Caenorhabditis elegans improved the sarcopenic phenotypes, blunting movement and mitochondrial structural and functional decline with age. We found that normally aged muscle cells exhibited elevated resting mitochondrial Ca2+ levels and increased mitophagy to eliminate damaged mitochondria. Similar to aging muscle, we found that suppressing MCU function in muscular dystrophy improved movement via reducing elevated resting mitochondrial Ca2+ levels. Taken together, our results reveal that elevated resting mitochondrial Ca2+ levels contribute to muscle decline with age and muscular dystrophy. Further, modulation of MCU activity may act as a potential pharmacological target in various conditions involving muscle loss.


Assuntos
Distrofias Musculares , Sarcopenia , Animais , Caenorhabditis elegans , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Sarcopenia/patologia , Distrofias Musculares/metabolismo , Cálcio/metabolismo
3.
Pharmacol Res ; 203: 107180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599468

RESUMO

Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.


Assuntos
Sulfeto de Hidrogênio , Mitocôndrias , Doenças Mitocondriais , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/uso terapêutico , Humanos , Animais , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Suplementos Nutricionais , Transdução de Sinais/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627403

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Morfolinas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Compostos Organofosforados/farmacologia , Compostos Organotiofosforados/farmacologia , Tionas/farmacologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Distrofina/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Sulfeto de Hidrogênio/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Compostos Organofosforados/metabolismo , Compostos Organotiofosforados/metabolismo , Prednisona/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Tionas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Utrofina/deficiência , Utrofina/genética
5.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628820

RESUMO

While spaceflight is becoming more common than before, the hazards spaceflight and space microgravity pose to the human body remain relatively unexplored. Astronauts experience muscle atrophy after spaceflight, but the exact reasons for this and solutions are unknown. Here, we take advantage of the nematode C. elegans to understand the effects of space microgravity on worm body wall muscle. We found that space microgravity induces muscle atrophy in C. elegans from two independent spaceflight missions. As a comparison to spaceflight-induced muscle atrophy, we assessed the effects of acute nutritional deprivation and muscle disuse on C. elegans muscle cells. We found that these two factors also induce muscle atrophy in the nematode. Finally, we identified clp-4, which encodes a calpain protease that promotes muscle atrophy. Mutants of clp-4 suppress starvation-induced muscle atrophy. Such comparative analyses of different factors causing muscle atrophy in C. elegans could provide a way to identify novel genetic factors regulating space microgravity-induced muscle atrophy.


Assuntos
Desnutrição , Voo Espacial , Inanição , Humanos , Animais , Caenorhabditis elegans/genética , Atrofia Muscular/etiologia
6.
FASEB J ; 35(9): e21830, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342902

RESUMO

Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2 O; 3 mL.kg-1 ), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2 O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters ("modules") with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions.


Assuntos
Proteínas Musculares/genética , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Doenças Musculares/genética , Biossíntese de Proteínas/genética , Transcriptoma/genética , Adulto , Humanos , Masculino , Força Muscular/genética , Adulto Jovem
7.
J Physiol ; 599(3): 963-979, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258480

RESUMO

KEY POINTS: Reduced vitamin D receptor (VDR) expression prompts skeletal muscle atrophy. Atrophy occurs through catabolic processes, namely the induction of autophagy, while anabolism remains unchanged. In response to VDR-knockdown mitochondrial function and related gene-set expression is impaired. In vitro VDR knockdown induces myogenic dysregulation occurring through impaired differentiation. These results highlight the autonomous role the VDR has within skeletal muscle mass regulation. ABSTRACT: Vitamin D deficiency is estimated to affect ∼40% of the world's population and has been associated with impaired muscle maintenance. Vitamin D exerts its actions through the vitamin D receptor (VDR), the expression of which was recently confirmed in skeletal muscle, and its down-regulation is linked to reduced muscle mass and functional decline. To identify potential mechanisms underlying muscle atrophy, we studied the impact of VDR knockdown (KD) on mature skeletal muscle in vivo, and myogenic regulation in vitro in C2C12 cells. Male Wistar rats underwent in vivo electrotransfer (IVE) to knock down the VDR in hind-limb tibialis anterior (TA) muscle for 10 days. Comprehensive metabolic and physiological analysis was undertaken to define the influence loss of the VDR on muscle fibre composition, protein synthesis, anabolic and catabolic signalling, mitochondrial phenotype and gene expression. Finally, in vitro lentiviral transfection was used to induce sustained VDR-KD in C2C12 cells to analyse myogenic regulation. Muscle VDR-KD elicited atrophy through a reduction in total protein content, resulting in lower myofibre area. Activation of autophagic processes was observed, with no effect upon muscle protein synthesis or anabolic signalling. Furthermore, RNA-sequencing analysis identified systematic down-regulation of multiple mitochondrial respiration-related protein and genesets. Finally, in vitro VDR-knockdown impaired myogenesis (cell cycling, differentiation and myotube formation). Together, these data indicate a fundamental regulatory role of the VDR in the regulation of myogenesis and muscle mass, whereby it acts to maintain muscle mitochondrial function and limit autophagy.


Assuntos
Receptores de Calcitriol , Deficiência de Vitamina D , Animais , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Ratos , Ratos Wistar , Receptores de Calcitriol/genética , Vitamina D
8.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063069

RESUMO

The nematode worm Caenorhabditis elegans has been used extensively to enhance our understanding of the human neuromuscular disorder Duchenne Muscular Dystrophy (DMD). With new arising clinically relevant models, technologies and treatments, there is a need to reconcile the literature and collate the key findings associated with this model.


Assuntos
Caenorhabditis elegans/fisiologia , Distrofia Muscular de Duchenne/patologia , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Epistasia Genética , Humanos , Distrofia Muscular de Duchenne/genética , Mutação/genética , Fenótipo
9.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502375

RESUMO

Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/patologia , Ausência de Peso/efeitos adversos , Animais , Caenorhabditis elegans , Ritmo Circadiano/fisiologia , Bases de Dados Genéticas , Drosophila melanogaster , Meio Ambiente Extraterreno , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Elevação dos Membros Posteriores , Camundongos , Modelos Animais , Voo Espacial , Estresse Fisiológico/fisiologia , Transcriptoma/genética
10.
FASEB J ; 33(8): 9540-9550, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31162948

RESUMO

Mitochondrial dysfunction impairs muscle health and causes subsequent muscle wasting. This study explores the role of mitochondrial dysfunction as an intramuscular signal for the extracellular matrix (ECM)-based proteolysis and, consequentially, muscle cell dystrophy. We found that inhibition of the mitochondrial electron transport chain causes paralysis as well as muscle structural damage in the nematode Caenorhabditis elegans. This was associated with a significant decline in collagen content. Both paralysis and muscle damage could be rescued with collagen IV overexpression, matrix metalloproteinase (MMP), and Furin inhibitors in Antimycin A-treated animal as well as in the C. elegans Duchenne muscular dystrophy model. Additionally, muscle cytosolic calcium increased in the Antimycin A-treated worms, and its down-regulation rescued the muscle damage, suggesting that calcium overload acts as one of the early triggers and activates Furin and MMPs for collagen degradation. In conclusion, we have established ECM degradation as an important pathway of muscle damage.-Sudevan, S., Takiura, M., Kubota, Y., Higashitani, N., Cooke, M., Ellwood, R. A., Etheridge, T., Szewczyk, N. J., Higashitani, A. Mitochondrial dysfunction causes Ca2+ overload and ECM degradation-mediated muscle damage in C. elegans.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Animais , Antimicina A/farmacologia , Western Blotting , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Furina/metabolismo , Metaloproteinases da Matriz/metabolismo , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal , Distrofia Muscular de Duchenne
11.
J Physiol ; 594(24): 7399-7417, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27654940

RESUMO

KEY POINTS: Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. ABSTRACT: Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of 'anabolic resistance' in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1-RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2 O (70 atom%; thereafter 50 ml week-1 ), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography-pyrolysis-isotope ratio mass spectrometry. After RET, 1-RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET-induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While 'basal' longer term MPS was identical between Y and O (∼1.35 ± 0.1% day-1 ), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day-1 ; O: 1.49 ± 0.1% day-1 ). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c-MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl-1 (all P < 0.05). Anabolic resistance is thus multifactorial.


Assuntos
Envelhecimento/fisiologia , Proteínas Musculares/biossíntese , Treinamento Resistido , Ribossomos/metabolismo , Adulto , Idoso , DNA/metabolismo , Humanos , Hipertrofia/metabolismo , Masculino , Biossíntese de Proteínas , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , RNA/metabolismo , Adulto Jovem
12.
FASEB J ; 29(11): 4485-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26169934

RESUMO

Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and metabolic and molecular control of hypertrophy remain poorly defined. Using newly developed deuterium oxide (D2O)-tracer techniques, we investigated the relationship between long-term muscle protein synthesis (MPS) and hypertrophic responses to RET. A total of 10 men (23 ± 1 yr) undertook 6 wk of unilateral (1-legged) RET [6 × 8 repetitions, 75% 1 repetition maximum (1-RM) 3/wk], rendering 1 leg untrained (UT) and the contralateral, trained (T). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom percentage; thereafter 50 ml/wk) with regular body water monitoring in saliva via high-temperature conversion elemental analyzer:isotope ratio mass spectrometer. Further bilateral VL muscle biopsies were taken at 3 and 6 wk to temporally quantify MPS via gas chromatography:pyrolysis:isotope ratio mass spectrometer. Expectedly, only the T leg exhibited marked increases in function [i.e., 1-RM/maximal voluntary contraction (60°)] and VL thickness (peaking at 3 wk). Critically, whereas MPS remained unchanged in the UT leg (e.g., ∼1.35 ± 0.08%/d), the T leg exhibited increased MPS at 0-3 wk (1.6 ± 0.01%/d), but not at 3-6 wk (1.29 ± 0.11%/d); this was reflected by dampened acute mechanistic target of rapamycin complex 1 signaling responses to RET, beyond 3 wk. Therefore, hypertrophic remodeling is most active during the early stages of RET, reflecting longer-term MPS. Moreover, D2O heralds promise for coupling MPS and muscle mass and providing insight into the control of hypertrophy and efficacy of anabolic interventions.


Assuntos
Adaptação Fisiológica/fisiologia , Óxido de Deutério/farmacocinética , Exercício Físico/fisiologia , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Adulto , Óxido de Deutério/administração & dosagem , Humanos , Hipertrofia/metabolismo , Masculino
13.
FASEB J ; 29(4): 1235-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25491313

RESUMO

The integrin-adhesome network, which contains >150 proteins, is mechano-transducing and located at discreet positions along the cell-cell and cell-extracellular matrix interface. A small subset of the integrin-adhesome is known to maintain normal muscle morphology. However, the importance of the entire adhesome for muscle structure and function is unknown. We used RNA interference to knock down 113 putative Caenorhabditis elegans homologs constituting most of the mammalian adhesome and 48 proteins known to localize to attachment sites in C. elegans muscle. In both cases, we found >90% of components were required for normal muscle mitochondrial structure and/or proteostasis vs. empty vector controls. Approximately half of these, mainly proteins that physically interact with each other, were also required for normal sarcomere and/or adhesome structure. Next we confirmed that the dystrophy observed in adhesome mutants associates with impaired maximal mitochondrial ATP production (P < 0.01), as well as reduced probability distribution of muscle movement forces compared with wild-type animals. Our results show that the integrin-adhesome network as a whole is required for maintaining both muscle structure and function and extend the current understanding of the full complexities of the functional adhesome in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Integrinas/metabolismo , Músculos/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Técnicas de Silenciamento de Genes , Genes de Helmintos , Integrinas/genética , Mecanotransdução Celular , Mitocôndrias Musculares/metabolismo , Movimento/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos/anatomia & histologia , Fenótipo , Interferência de RNA
14.
PLoS Genet ; 8(1): e1002471, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22253611

RESUMO

Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line- or M-line-specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C. elegans lacks satellite cells, this mechanism is intrinsic to the muscles and raises the question if such a mechanism also exists in higher metazoans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Calpaína/metabolismo , Moléculas de Adesão Celular/metabolismo , Integrinas/metabolismo , Células Musculares/metabolismo , Proteínas Musculares/metabolismo , Animais , Calpaína/antagonistas & inibidores , Adesão Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Imunoglobulinas/metabolismo , Integrinas/química , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteoglicanas/metabolismo , Proteólise , Interferência de RNA
15.
Am J Physiol Endocrinol Metab ; 306(5): E571-9, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381002

RESUMO

Quantification of muscle protein synthesis (MPS) remains a cornerstone for understanding the control of muscle mass. Traditional [(13)C]amino acid tracer methodologies necessitate sustained bed rest and intravenous cannulation(s), restricting studies to ~12 h, and thus cannot holistically inform on diurnal MPS. This limits insight into the regulation of habitual muscle metabolism in health, aging, and disease while querying the utility of tracer techniques to predict the long-term efficacy of anabolic/anticatabolic interventions. We tested the efficacy of the D2O tracer for quantifying MPS over a period not feasible with (13)C tracers and too short to quantify changes in mass. Eight men (22 ± 3.5 yr) undertook one-legged resistance exercise over an 8-day period (4 × 8-10 repetitions, 80% 1RM every 2nd day, to yield "nonexercised" vs. "exercise" leg comparisons), with vastus lateralis biopsies taken bilaterally at 0, 2, 4, and 8 days. After day 0 biopsies, participants consumed a D2O bolus (150 ml, 70 atom%); saliva was collected daily. Fractional synthetic rates (FSRs) of myofibrillar (MyoPS), sarcoplasmic (SPS), and collagen (CPS) protein fractions were measured by GC-pyrolysis-IRMS and TC/EA-IRMS. Body water initially enriched at 0.16-0.24 APE decayed at ~0.009%/day. In the nonexercised leg, MyoPS was 1.45 ± 0.10, 1.47 ± 0.06, and 1.35 ± 0.07%/day at 0-2, 0-4, and 0-8 days, respectively (~0.05-0.06%/h). MyoPS was greater in the exercised leg (0-2 days: 1.97 ± 0.13%/day; 0-4 days: 1.96 ± 0.15%/day, P < 0.01; 0-8 days: 1.79 ± 0.12%/day, P < 0.05). CPS was slower than MyoPS but followed a similar pattern, with the exercised leg tending to yield greater FSRs (0-2 days: 1.14 ± 0.13 vs. 1.45 ± 0.15%/day; 0-4 days: 1.13 ± 0.07%/day vs. 1.47 ± 0.18%/day; 0-8 days: 1.03 ± 0.09%/day vs. 1.40 ± 0.11%/day). SPS remained unchanged. Therefore, D2O has unrivaled utility to quantify day-to-day MPS in humans and inform on short-term changes in anabolism and presumably catabolism alike.


Assuntos
Óxido de Deutério/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas/fisiologia , Adulto , Exercício Físico/fisiologia , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Treinamento Resistido
16.
Gerontology ; 60(2): 138-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24217152

RESUMO

The prospect of space travel continues to capture the imagination. Several competing companies are now promising flights for the general population. Previously, it was recognized that many of the physiological changes that occur with spaceflight are similar to those seen with normal ageing. This led to the notion that spaceflight can be used as a model of accelerated ageing and raised concerns about the safety of individuals engaging in space travel. Paradoxically, however, space travel has been recently shown to be beneficial to some aspects of muscle health in the tiny worm Caenorhabditis elegans. C. elegans is a commonly used laboratory animal for studying ageing. C. elegans displays age-related decline of some biological processes observed in ageing humans, and about 35% of C. elegans' genes have human homologs. Space flown worms were found to have decreased expression of a number of genes that increase lifespan when expressed at lower levels. These changes were accompanied by decreased accumulation of toxic protein aggregates in ageing worms' muscles. Thus, in addition to spaceflight producing physiological changes that are similar to accelerated ageing, it also appears to produce some changes similar to delayed ageing. Here, we put forward the hypothesis that in addition to the previously well-appreciated mechanotransduction changes, neural and endocrine signals are altered in response to spaceflight and that these may have both negative (e.g. less muscle protein) and some positive consequences (e.g. healthier muscles), at least for invertebrates, with respect to health in space. Given that changes in circulating hormones are well documented with age and in astronauts, our view is that further research into the relationship between metabolic control, ageing, and adaptation to the environment should be productive in advancing our understanding of the physiology of both spaceflight and ageing.


Assuntos
Envelhecimento/fisiologia , Caenorhabditis elegans/fisiologia , Voo Espacial , Adaptação Fisiológica , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Metabolismo Energético , Expressão Gênica , Genes de Helmintos , Humanos , Longevidade/fisiologia , Modelos Animais , Modelos Biológicos , Músculos/fisiologia , Ausência de Peso/efeitos adversos
17.
Nat Commun ; 15(1): 4952, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862505

RESUMO

Future multi-year crewed planetary missions will motivate advances in aerospace nutrition and telehealth. On Earth, the Human Cell Atlas project aims to spatially map all cell types in the human body. Here, we propose that a parallel Human Cell Space Atlas could serve as an openly available, global resource for space life science research. As humanity becomes increasingly spacefaring, high-resolution omics on orbit could permit an advent of precision spaceflight healthcare. Alongside the scientific potential, we consider the complex ethical, cultural, and legal challenges intrinsic to the human space omics discipline, and how philosophical frameworks may benefit from international perspectives.


Assuntos
Astronautas , Voo Espacial , Humanos , Genômica/métodos , Corpo Humano
18.
Nat Commun ; 15(1): 6158, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039045

RESUMO

Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.


Assuntos
Alelos , Medicina de Precisão , Voo Espacial , Humanos , Medicina de Precisão/métodos , Medicina Aeroespacial , Genoma Humano , Neoplasias/genética , Neoplasias/terapia
19.
Commun Med (Lond) ; 4(1): 106, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862781

RESUMO

BACKGROUND: Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. METHODS: To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4. RESULTS: Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression. CONCLUSION: Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.


Spaceflight is a hostile environment which can lead to health problems in astronauts, including in the skin. It is not currently well understood why these skin problems occur. Here, we analyzed data from the skin of space flown mice and astronauts to try and identify possible explanations for these skin problems. It appears that changes in the activation of genes related to damage to DNA, skin barrier health, and mitochondria (the energy-producing parts of cells) may play a role in these skin problems. Further research will be needed to confirm exactly how these changes influence skin health, which could lead to solutions for preventing and managing such issues in astronauts.

20.
Sci Rep ; 14(1): 13098, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862573

RESUMO

Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth. However, our understanding of the connection between these molecular shifts and disease development in space remains limited. Frailty syndrome, a clinical syndrome associated with biological aging, has not been comprehensively investigated during spaceflight. To bridge this knowledge gap, we leveraged murine data obtained from NASA's GeneLab, along with astronaut data gathered from the JAXA and Inspiration4 missions. Our objective was to assess the presence of biological markers and pathways related to frailty, aging, and sarcopenia within the spaceflight context. Through our analysis, we identified notable changes in gene expression patterns that may be indicative of the development of a frailty-like condition during space missions. These findings suggest that the parallels between spaceflight and the aging process may extend to encompass frailty as well. Consequently, further investigations exploring the utility of a frailty index in monitoring astronaut health appear to be warranted.


Assuntos
Envelhecimento , Biomarcadores , Fragilidade , Voo Espacial , Envelhecimento/genética , Animais , Camundongos , Humanos , Astronautas , Masculino , Ausência de Peso/efeitos adversos , Sarcopenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA