RESUMO
Carbonaceous (C-type) asteroids1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites2,3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth's atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)4 onboard the spacecraft Hayabusa25, indicating that the asteroid's boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m-2 s-0.5 K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect7,8. We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites6. These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies10.
RESUMO
Photomixotrophic growth A (PmgA) is a pleiotropic regulator essential for growth under photomixotrophic and prolonged high-light (HL) conditions in the cyanobacterium Synechocystis sp. PCC 6803. The overall similarity with the antisigma factor of the bacterial partner-switching system indicates that PmgA exerts a regulatory function via phosphorylation of its target proteins. In this study, we performed an in vitro phosphorylation assay and protein-protein interaction analysis and found that PmgA interacts with 4 antisigma antagonist homologs, Ssr1600, Slr1856, Slr1859, and Slr1912, but specifically phosphorylates Ssr1600. Phenotypic analyses using the set of gene disruption and overexpression strains of pmgA and ssr1600 revealed that phosphorylation by PmgA is essential for the accumulation of Ssr1600 protein in vivo. The ssr1600-disrupted mutant showed similar phenotypes as those previously reported for the pmgA-disrupted mutant, namely, no obvious phenotype just after the shift to HL, but higher chlorophyll content, 5-aminolevulinic acid synthesis activity, and psaAB transcript levels than those in the wild type after 6â h. These findings indicate that the phosphorylated form of Ssr1600 works as the output of the partner-switching system to coordinately repress chlorophyll biosynthesis and accumulation of photosystem I during HL acclimation.
Assuntos
Aclimatação , Proteínas de Bactérias , Luz , Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/fisiologia , Synechocystis/efeitos da radiação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Aclimatação/genética , Regulação Bacteriana da Expressão Gênica , Clorofila/metabolismoRESUMO
Non-transition metal oxides, including major minerals of the early Solar System, are known to evaporate decomposing into multiple gas molecules, while maintaining their stoichiometric compositions (dissociative congruent evaporation). Here, we derived the absolute rate of this type of evaporation using the transition state theory. In our modified transition state theory, the activation energy closely corresponds to the average energy of the molecules at the transition state, reflecting the degree of decomposition at the potential energy barrier along the reaction coordinate of evaporation. By comparing the theoretical and experimental evaporation rates for the reaction MgO (s) â Mg (g) + O (g), we found that there is an activation barrier close to the product side (i.e., "late" barrier) where the decomposition is almost achieved. The present theory is advantageous to the Hertz-Knudsen equation, which is essentially formulated as the evaporation rate in equilibrium based on the detailed balance, in that it describes dissociative congruent evaporation as a non-equilibrium process and thus provides the link between the experiments and the reaction dynamics.
RESUMO
Millimetre-sized primordial rock fragments originating from asteroid Ryugu were investigated using high energy X-ray fluorescence spectroscopy, providing 2D and 3D elemental distribution and quantitative composition information on the microscopic level. Samples were collected in two phases from two sites on asteroid Ryugu and safely returned to Earth by JAXA's asteroid explorer Hayabusa2, during which time the collected material was stored and maintained free from terrestrial influences, including exposure to Earth's atmosphere. Several grains of interest were identified and further characterised to obtain quantitative information on the rare earth element (REE) content within said grains, following a reference-based and computed-tomography-assisted fundamental parameters quantification approach. Several orders of magnitude REE enrichments compared to the mean CI chondrite composition were found within grains that could be identified as apatite phase. Small enrichment of LREE was found for dolomite grains and slight enrichment or depletion for the general matrices within the Ryugu rock fragments A0055 and C0076, respectively. Supplementary Information: The online version contains supplementary material available at 10.1186/s40623-022-01705-3.
RESUMO
Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.
RESUMO
Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at different landing sites on the Phobos surface to collect > 10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars-moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, Ti, and Zn can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its reflectance spectra, geochemical data including the nature of organic matter as well as bulk H and N isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos. Long- and short-lived radionuclide chronometry such as 53Mn-53Cr and 87Rb-87Sr systematics can date pivotal events like impacts, thermal metamorphism, and aqueous alteration on Phobos. It should be noted that the Phobos regolith is expected to contain a small amount of materials delivered from Mars, which may be physically and chemically different from any Martian meteorites in our collection and thus are particularly precious. The analysis plan will be designed to detect such Martian materials, if any, from the returned samples dominated by the endogenous Phobos materials in curation procedures at JAXA before they are processed for further analyses.
RESUMO
Extraterrestrial minerals on the surface of airless Solar System bodies undergo gradual alteration processes known as space weathering over long periods of time. The signatures of space weathering help us understand the phenomena occurring in the Solar System. However, meteorites rarely retain the signatures, making it impossible to study the space weathering processes precisely. Here, we examine samples retrieved from the asteroid Ryugu by the Hayabusa2 spacecraft and discover the presence of nonmagnetic framboids through electron holography measurements that can visualize magnetic flux. Magnetite particles, which normally provide a record of the nebular magnetic field, have lost their magnetic properties by reduction via a high-velocity (>5 km s-1) impact of a micrometeoroid with a diameter ranging from 2 to 20 µm after destruction of the parent body of Ryugu. Around these particles, thousands of metallic-iron nanoparticles with a vortex magnetic domain structure, which could have recorded a magnetic field in the impact event, are found. Through measuring the remanent magnetization of the iron nanoparticles, future studies are expected to elucidate the nature of the nebular/interplanetary magnetic fields after the termination of aqueous alteration in an asteroid.
RESUMO
We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic acid, are predominant in samples from the two touchdown locations at Ryugu. The quantitative and qualitative profiles for the hydrophilic molecules between the two sampling locations shows similar trends within the order of ppb (parts per billion) to ppm (parts per million). A wide variety of structural isomers, including α- and ß-hydroxy acids, are observed among the hydrophilic molecules. We also identify pyruvic acid and dihydroxy and tricarboxylic acids, which are biochemically important intermediates relevant to molecular evolution, such as the primordial TCA (tricarboxylic acid) cycle. Here, we find evidence that the asteroid Ryugu samples underwent substantial aqueous alteration, as revealed by the presence of malonic acid during keto-enol tautomerism in the dicarboxylic acid profile. The comprehensive data suggest the presence of a series for water-soluble organic molecules in the regolith of Ryugu and evidence of signatures in coevolutionary aqueous alteration between water and organics in this carbonaceous asteroid.
RESUMO
The Hayabusa2 spacecraft delivered samples of the carbonaceous asteroid Ryugu to Earth. Some of the sample particles show evidence of micrometeoroid impacts, which occurred on the asteroid surface. Among those, particles A0067 and A0094 have flat surfaces on which a large number of microcraters and impact melt splashes are observed. Two impact melt splashes and one microcrater were analyzed to unveil the nature of the objects that impacted the asteroid surface. The melt splashes consist mainly of Mg-Fe-rich glassy silicates and Fe-Ni sulfides. The microcrater trapped an impact melt consisting mainly of Mg-Fe-rich glassy silicate, Fe-Ni sulfides, and minor silica-rich glass. These impact melts show a single compositional trend indicating mixing of Ryugu surface materials and impactors having chondritic chemical compositions. The relict impactor in one of the melt splashes shows mineralogical similarity with anhydrous chondritic interplanetary dust particles having a probable cometary origin. The chondritic micrometeoroids probably impacted the Ryugu surface during its residence in a near-Earth orbit.
RESUMO
Returned samples from the carbonaceous asteroid (162173) Ryugu provide pristine information on the original aqueous alteration history of the Solar System. Secondary precipitates, such as carbonates and phyllosilicates, reveal elemental partitioning of the major component ions linked to the primordial brine composition of the asteroid. Here, we report on the elemental partitioning and Mg isotopic composition (25Mg/24Mg) of breunnerite [(Mg, Fe, Mn)CO3] from the Ryugu C0002 sample and the A0106 and C0107 aggregates by sequential leaching extraction of salts, exchangeable ions, carbonates, and silicates. Breunnerite was the sample most enriched in light Mg isotopes, and the 25Mg/24Mg value of the fluid had shifted lower by ~0.38 than the initial value (set to 0) before dolomite precipitation. As a simple model, the Mg2+ first precipitated in phyllosilicates, followed by dolomite precipitation, at which time ~76-87% of Mg2+ had been removed from the primordial brine. A minor amount of phyllosilicate precipitation continued after dolomite precipitation. The element composition profiles of the latest solution that interacted with the cation exchange pool of Ryugu were predominantly Na-rich. Na+ acts as a bulk electrolyte and contributes to the stabilization of the negative surface charge of phyllosilicates and organic matter on Ryugu.
RESUMO
The sample from the near-Earth carbonaceous asteroid (162173) Ryugu is analyzed in the context of carbonaceous meteorites soluble organic matter. The analysis of soluble molecules of samples collected by the Hayabusa2 spacecraft shines light on an extremely high molecular diversity on the C-type asteroid. Sequential solvent extracts of increasing polarity of Ryugu samples are analyzed using mass spectrometry with complementary ionization methods and structural information confirmed by nuclear magnetic resonance spectroscopy. Here we show a continuum in the molecular size and polarity, and no organomagnesium molecules are detected, reflecting a low temperature and water-rich environment on the parent body approving earlier mineralogical and chemical data. High abundance of sulfidic and nitrogen rich compounds as well as high abundance of ammonium ions confirm the water processing. Polycyclic aromatic hydrocarbons are also detected in a structural continuum of carbon saturations and oxidations, implying multiple origins of the observed organic complexity, thus involving generic processes such as earlier carbonization and serpentinization with successive low temperature aqueous alteration.
RESUMO
Chondrule-like objects and Ca-Al-rich inclusions (CAIs) are discovered in the retuned samples from asteroid Ryugu. Here we report results of oxygen isotope, mineralogical, and compositional analysis of the chondrule-like objects and CAIs. Three chondrule-like objects dominated by Mg-rich olivine are 16O-rich and -poor with Δ17O (=δ17O - 0.52 × Î´18O) values of ~ -23 and ~ -3, resembling what has been proposed as early generations of chondrules. The 16O-rich objects are likely to be melted amoeboid olivine aggregates that escaped from incorporation into 16O-poor chondrule precursor dust. Two CAIs composed of refractory minerals are 16O-rich with Δ17O of ~ -23 and possibly as old as the oldest CAIs. The discovered objects (<30 µm) are as small as those from comets, suggesting radial transport favoring smaller objects from the inner solar nebula to the formation location of the Ryugu original parent body, which is farther from the Sun and scarce in chondrules. The transported objects may have been mostly destroyed during aqueous alteration in the Ryugu parent body.
RESUMO
The pristine sample from the near-Earth carbonaceous asteroid (162173) Ryugu collected by the Hayabusa2 spacecraft enabled us to analyze the pristine extraterrestrial material without uncontrolled exposure to the Earth's atmosphere and biosphere. The initial analysis team for the soluble organic matter reported the detection of wide variety of organic molecules including racemic amino acids in the Ryugu samples. Here we report the detection of uracil, one of the four nucleobases in ribonucleic acid, in aqueous extracts from Ryugu samples. In addition, nicotinic acid (niacin, a B3 vitamer), its derivatives, and imidazoles were detected in search for nitrogen heterocyclic molecules. The observed difference in the concentration of uracil between A0106 and C0107 may be related to the possible differences in the degree of alteration induced by energetic particles such as ultraviolet photons and cosmic rays. The present study strongly suggests that such molecules of prebiotic interest commonly formed in carbonaceous asteroids including Ryugu and were delivered to the early Earth.
RESUMO
In the samples collected from the asteroid Ryugu, magnetite displays natural remanent magnetization due to nebular magnetic field, whereas contemporaneously grown iron sulfide does not display stable remanent magnetization. To clarify this counterintuitive feature, we observed their nanoscale magnetic domain structures using electron holography and found that framboidal magnetites have an external magnetic field of 300 A m-1, similar to the bulk value, and its magnetic stability was enhanced by interactions with neighboring magnetites, permitting a disk magnetic field to be recorded. Micrometer-sized pyrrhotite showed a multidomain magnetic structure that was unable to retain natural remanent magnetization over a long time due to short relaxation time of magnetic-domain-wall movement, whereas submicron-sized sulfides formed a nonmagnetic phase. These results show that both magnetite and sulfide could have formed simultaneously during the aqueous alteration in the parent body of the asteroid Ryugu.
RESUMO
Samples from the carbonaceous asteroid (162173) Ryugu provide information on the chemical evolution of organic molecules in the early solar system. Here we show the element partitioning of the major component ions by sequential extractions of salts, carbonates, and phyllosilicate-bearing fractions to reveal primordial brine composition of the primitive asteroid. Sodium is the dominant electrolyte of the salt fraction extract. Anions and NH4+ are more abundant in the salt fraction than in the carbonate and phyllosilicate fractions, with molar concentrations in the order SO42- > Cl- > S2O32- > NO3- > NH4+. The salt fraction extracts contain anionic soluble sulfur-bearing species such as Sn-polythionic acids (n < 6), Cn-alkylsulfonates, alkylthiosulfonates, hydroxyalkylsulfonates, and hydroxyalkylthiosulfonates (n < 7). The sulfur-bearing soluble compounds may have driven the molecular evolution of prebiotic organic material transforming simple organic molecules into hydrophilic, amphiphilic, and refractory S allotropes.
RESUMO
The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a variety of molecules containing the atoms CHNOS, formed by methylation, hydration, hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, which had properties consistent with an abiotic origin. These compounds likely arose from an aqueous reaction on Ryugu's parent body and are similar to the organics in Ivuna-type meteorites. These molecules can survive on the surfaces of asteroids and be transported throughout the Solar System.
RESUMO
The carbonaceous asteroid Ryugu has been explored by the Hayabusa2 spacecraft to elucidate the actual nature of hydrous asteroids. Laboratory analyses revealed that the samples from Ryugu are comparable to unheated CI carbonaceous chondrites; however, reflectance spectra of Ryugu samples and CIs do not coincide. Here, we demonstrate that Ryugu sample spectra are reproduced by heating Orgueil CI chondrite at 300°C under reducing conditions, which caused dehydration of terrestrial weathering products and reduction of iron in phyllosilicates. Terrestrial weathering of CIs accounts for the spectral differences between Ryugu sample and CIs, which is more severe than space weathering that likely explains those between asteroid Ryugu and the collected samples. Previous assignments of CI chondrite parent bodies, i.e., chemically most primitive objects in the solar system, are based on the spectra of CI chondrites. This study indicates that actual spectra of CI parent bodies are much darker and flatter at ultraviolet to visible wavelengths than the spectra of CI chondrites.
RESUMO
The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.
RESUMO
Polycyclic aromatic hydrocarbons (PAHs) contain â²20% of the carbon in the interstellar medium. They are potentially produced in circumstellar environments (at temperatures â³1000 kelvin), by reactions within cold (~10 kelvin) interstellar clouds, or by processing of carbon-rich dust grains. We report isotopic properties of PAHs extracted from samples of the asteroid Ryugu and the meteorite Murchison. The doubly-13C substituted compositions (Δ2×13C values) of the PAHs naphthalene, fluoranthene, and pyrene are 9 to 51 higher than values expected for a stochastic distribution of isotopes. The Δ2×13C values are higher than expected if the PAHs formed in a circumstellar environment, but consistent with formation in the interstellar medium. By contrast, the PAHs phenanthrene and anthracene in Ryugu samples have Δ2×13C values consistent with formation by higher-temperature reactions.
RESUMO
In the emerging Internet of Things (IoT) society, there is a significant need for low-cost, high-performance flexible humidity sensors in wearable devices. However, commercially available humidity sensors lack flexibility or require expensive and complex fabrication methods, limiting their application and widespread use. We report a high-performance printed flexible humidity sensor using a cellulose nanofiber/carbon black (CNF/CB) composite. The cellulose nanofiber enables excellent dispersion of carbon black, which facilitates the ink preparation and printing process. At the same time, its hydrophilic and porous nature provides high sensitivity and fast response to humidity. Significant resistance changes of 120% were observed in the sensor at humidity ranging from 30% RH to 90% RH, with a fast response time of 10 s and a recovery time of 6 s. Furthermore, the developed sensor also exhibited high-performance uniformity, response stability, and flexibility. A simple humidity detection device was fabricated and successfully applied to monitor human respiration and noncontact fingertip moisture as a proof-of-concept.