Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Trends Genet ; 40(5): 449-461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599921

RESUMO

Tef or teff [Eragrostis tef (Zucc.) Trotter] is a cereal crop indigenous to the Horn of Africa, where it is a staple food for a large population. The popularity of tef arises from its resilience to environmental stresses and its nutritional value. For many years, tef has been considered an orphan crop, but recent research initiatives from across the globe are helping to unravel its undisclosed potential. Advanced omics tools and techniques have been directed toward the exploration of tef's diversity with the aim of increasing its productivity. In this review, we report on the most recent advances in tef omics that brought the crop into the spotlight of international research.


Assuntos
Produtos Agrícolas , Genômica , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Eragrostis/genética , Proteômica , Metabolômica , Genoma de Planta/genética
2.
Planta ; 259(4): 75, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409565

RESUMO

MAIN CONCLUSION: Seed priming with gas plasma-activated water results in an increased ageing resilience in Eragrostis tef grains compared to a conventional hydropriming protocol. Tef (Eragrostis tef) is a cereal grass and a major staple crop of Ethiopia and Eritrea. Despite its significant importance in terms of production, consumption, and cash crop value, tef has been understudied and its productivity is low. In this study, tef grains have undergone different priming treatments to enhance seed vigour and seedling performance. A conventional hydropriming and a novel additive priming technology with gas plasma-activated water (GPAW) have been used and tef grains were then subjected to germination performance assays and accelerated ageing. Tef priming increases the germination speed and vigour of the grains. Priming with GPAW retained the seed storage potential after ageing, therefore, presenting an innovative environmental-friendly seed technology with the prospect to address variable weather conditions and ultimately food insecurity. Seed technology opens new possibilities to increase productivity of tef crop farming to achieve a secure and resilient tef food system and economic growth in Ethiopia by sustainable intensification of agriculture beyond breeding.


Assuntos
Eragrostis , Etiópia , Melhoramento Vegetal , Sementes , Grão Comestível
3.
Planta ; 250(3): 677-694, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31190115

RESUMO

MAIN CONCLUSION: Due to significant contributions of orphan crops in the economy of the developing world, scientific studies need to be promoted on these little researched but vital crops of smallholder farmers and consumers. Food security is the main challenge in the developing world, particularly in the least developed countries. Orphan crops play a vital role in the food security and livelihood of resource-poor farmers and consumers in these countries. Like major crops, there are members of all food types-cereals, legumes, vegetables and root and tuber crops, that are considered to be orphan crops. Despite their huge importance for present and future agriculture, orphan crops have generally received little attention by the global scientific community. Due to this, they produce inferior yields in terms of both quantity and quality. The major bottlenecks affecting the productivity of these crops are little or no selection of improved genetic traits, extreme environmental conditions and unfavorable policy. However, some orphan crops have recently received the attention of the global and national scientific community where advanced research and development initiatives have been launched. These initiatives which implement a variety of genetic and genomic tools targeted major constraints affecting productivity and/or nutritional quality of orphan crops. In this paper, some of these initiatives are briefly described. Here, I provide key suggestions to relevant stakeholders regarding improvement of orphan crops. Concerted efforts are urgently needed to advance the research and development of both the major and orphan crops so that food security will be achieved and ultimately the livelihood of the population will be improved.


Assuntos
Produção Agrícola , Produtos Agrícolas , Produção Agrícola/economia , Produção Agrícola/métodos , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/normas , Países em Desenvolvimento/economia , Abastecimento de Alimentos
4.
Planta ; 250(3): 753-767, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31222492

RESUMO

MAIN CONCLUSION: Tef is a resilient crop from the Horn of Africa with significant importance in food and nutrition security, and currently gaining global popularity as health and performance food. Tef [Eragrostis tef (Zucc.) Trotter] is the most important cereal of Ethiopia in terms of production, consumption and cash crop value. In Ethiopia, tef is annually grown on about 3 million ha with total grain production of over 5 million tons. As such, it accounts for about 30% of the total cultivated area and one-fifth of the gross grain production of all cereals cultivated in the country. In spite of its supreme economic and agricultural significance in Ethiopia, its productivity is relatively low with national average yield of about 1.7 t/ha. This has primarily been due to the very little scientific improvement done on the crop. Tef has still been an "orphan crop" since it is globally a very much under-researched crop owing to its localized importance. Scientific research on tef in Ethiopia began in the late 1950s. The main objective of this paper is to provide an overview of the significance and major production constraints of tef, and the major achievements made to date in various tef research aspects including breeding, agronomy, crop protection, and agricultural economics and extension. Based on these reviews, the paper eventually concludes with remarks on the way forward by emphasizing on the identification of the major gaps and the improvement efforts required for realizing the ever-needed breakthrough in the productivity and production of the crop. The major focal areas of future efforts include increasing productivity of both grain and biomass, systematic conservation and mining of the genetic resources, tackling the lodging malady, mechanization of the crop's husbandry, understanding the overall physiology of the crop especially with respect to stress tolerance, unraveling the nutritional qualities, and development of recipes and value-added products.


Assuntos
Produtos Agrícolas , Eragrostis , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Eragrostis/crescimento & desenvolvimento , Etiópia , Valor Nutritivo
5.
Funct Integr Genomics ; 17(5): 583-598, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28321518

RESUMO

MicroRNAs are a class of post-transcriptional regulators of plant developmental and physiological processes and responses to environmental stresses. Here, we present the study regarding the annotation and characterization of MIR genes conducted in durum wheat. We characterized the miRNAome of leaf and root tissues at tillering stage under two environmental conditions: irrigated with 100% (control) and 55% of evapotranspiration (early water stress). In total, 90 microRNAs were identified, of which 32 were classified as putative novel and species-specific miRNAs. In addition, seven microRNA homeologous groups were identified in each of the two genomes of the tetraploid durum wheat. Differential expression analysis highlighted a total of 45 microRNAs significantly differentially regulated in the pairwise comparisons leaf versus root. The miRNA families, miR530, miR395, miR393, miR5168, miR396 and miR166, miR171, miR319, and miR167, were the most expressed in leaves in comparison to roots. Putative microRNA targets were predicted for both five and three prime sequences derived from the stem-loop of the MIR gene. Gene ontology analysis showed significant overrepresented gene categories in microRNA targets belonging to transcription factors, phenylpropanoids, oxydases, and lipid binding-protein. This work represents one of the first genome wide characterization of MIR genes in durum wheat, identifying leaf and root tissue-specific microRNAs. This genomic identification of microRNAs together with the analysis of their expression profiles is a well-accepted starting point leading to a better comprehension of the role of MIR genes in the genus Triticum.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , RNA de Plantas/genética , Triticum/genética , Secas , Especificidade de Órgãos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico , Triticum/fisiologia
6.
Curr Genomics ; 17(6): 499-508, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28217006

RESUMO

Mutagenesis can be random or targeted and occur by nature or artificially by humans. However, the bulk of mutagenesis employed in plants are random and caused by physical agents such as x-ray and gamma-ray or chemicals such as ethyl-methane sulfonate (EMS). Researchers are interested in first identifying these mutations and/or polymorphisms in the genome followed by investigating their effects in the plant function as well as their application in crop improvement. The high-throughput technique called TILLING (Targeting Induced Local Lesion IN Genomes) has been already established and become popular for identifying candidate mutant individuals harboring mutations in the gene of interest. TILLING is a non-transgenic and reverse genetics method of identifying a single nucleotide changes. The procedure of TILLING comprises traditional mutagenesis using optimum type and concentration of mutagen, development of a non-chimeric population, DNA extraction and pooling, mutation detection as well as validation of results. In general, TILLING has proved to be robust in identifying useful mutant lines in diverse economically important crops of the world. The main goal of the current mini-review is to show the significance role played by mutagenesis and TILLING in the discovery of DNA lesions which are to be used in the improvement of crops for the trait of interest.

7.
J Exp Bot ; 66(3): 933-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25399019

RESUMO

Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop.


Assuntos
Eragrostis/crescimento & desenvolvimento , Eragrostis/genética , Proteínas de Plantas/genética , Tubulina (Proteína)/genética , Sequência de Aminoácidos , Eragrostis/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
8.
BMC Genomics ; 15: 581, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25007843

RESUMO

BACKGROUND: Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource. RESULTS: The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten. CONCLUSIONS: It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.


Assuntos
Eragrostis/genética , Genoma de Planta , Transcriptoma , Mapeamento Cromossômico , Eragrostis/classificação , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Prolaminas/classificação , Prolaminas/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Análise de Sequência de RNA
10.
Plant Biotechnol J ; 12(5): 534-40, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24891040

RESUMO

Tef, Eragrostis tef (Zucc.) Trotter, is the most important cereal in Ethiopia. Tef is cultivated by more than five million small-scale farmers annually and constitutes the staple food for more than half of the population of 80 million. The crop is preferred by both farmers and consumers due to its beneficial traits associated with its agronomy and utilization. The genetic and phenotypic diversity of tef in Ethiopia is a national treasure of potentially global importance. In order for this diversity to be effectively conserved and utilized, a better understanding at the genomic level is necessary. In the recent years, tef has become the subject of genomic research in Ethiopia and abroad. Genomic-assisted tef improvement holds tremendous potential for improving productivity, thereby benefiting the smallholder farmers who have cultivated and relied on the crop for thousands of years. It is hoped that such research endeavours will provide solutions to some of the age-old problems of tef's husbandry. In this review, we provide a brief description of the genesis and progress of tef genomic research to date, suggest ways to utilize the genomic tools developed so far, discuss the potential of genomics to enable sustainable conservation and use of tef genetic diversity and suggest opportunities for the future research.


Assuntos
Eragrostis/genética , Genômica/tendências , Pesquisa/tendências
11.
Front Agron ; 4: 859223, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37680880

RESUMO

There are growing calls to adopt more sustainable forms of agriculture that balance the need to increase production with environmental, human health, and wellbeing concerns. Part of this conversation has included a debate on promoting and mainstreaming neglected and underutilized crop species (NUS) because they represent a more ecologically friendly type of agriculture. We conducted a systematic review to determine the ecosystem services derived from NUS and assess their potential to promote functional ecological diversity, food and nutritional security, and transition to more equitable, inclusive, sustainable and resilient agricultural landscapes and food systems in Africa. Our literature search yielded 35 articles for further analysis. The review showed that NUS provide various provisioning, regulating, cultural, and supporting ecosystem services and several environmental and health co-benefits, dietary diversity, income, sustainable livelihood outcomes, and economic empowerment, especially for women. Importantly, NUS address the three pillars of sustainable development-ecological, social, and economic. Thus, NUS may provide a sustainable, fit-for-purpose transformative ecosystem-based adaptation solution for Africa to transition to more sustainable, healthy, equitable, and resilient agricultural landscapes and food systems.

12.
Plants (Basel) ; 10(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806233

RESUMO

Tef (Eragrostis tef (Zucc.) Trotter) is a staple food crop for 70% of the Ethiopian population and is currently cultivated in several countries for grain and forage production. It is one of the most nutritious grains, and is also more resilient to marginal soil and climate conditions than major cereals such as maize, wheat and rice. However, tef is an extremely low-yielding crop, mainly due to lodging, which is when stalks fall on the ground irreversibly, and prolonged drought during the growing season. Climate change is triggering several biotic and abiotic stresses which are expected to cause severe food shortages in the foreseeable future. This has necessitated an alternative and robust approach in order to improve resilience to diverse types of stresses and increase crop yields. Traditional breeding has been extensively implemented to develop crop varieties with traits of interest, although the technique has several limitations. Currently, genome editing technologies are receiving increased interest among plant biologists as a means of improving key agronomic traits. In this review, the potential application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) technology in improving stress resilience in tef is discussed. Several putative abiotic stress-resilient genes of the related monocot plant species have been discussed and proposed as target genes for editing in tef through the CRISPR-Cas system. This is expected to improve stress resilience and boost productivity, thereby ensuring food and nutrition security in the region where it is needed the most.

13.
Front Plant Sci ; 12: 756182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069618

RESUMO

Enset (Ensete ventricosum) is a multipurpose crop extensively cultivated in southern and southwestern Ethiopia for human food, animal feed, and fiber. It has immense contributions to the food security and rural livelihoods of 20 million people. Several distinct enset landraces are cultivated for their uses in traditional medicine. These landraces are vulnerable to various human-related activities and environmental constraints. The genetic diversity among the landraces is not verified to plan conservation strategy. Moreover, it is currently unknown whether medicinal landraces are genetically differentiated from other landraces. Here, we characterize the genetic diversity of medicinal enset landraces to support effective conservation and utilization of their diversity. We evaluated the genetic diversity of 51 enset landraces, of which 38 have reported medicinal value. A total of 38 alleles across the 15 simple sequence repeat (SSR) loci and a moderate level of genetic diversity (He = 0.47) were detected. Analysis of molecular variation (AMOVA) revealed that only 2.4% of the total genetic variation was contributed by variation among the medicinal and non-medicinal groups of landraces, with an FST of 0.024. A neighbor-joining tree showed four separate clusters with no correlation to the use-values of the landraces. Except for two, all "medicinal" landraces with distinct vernacular names were found to be genetically different, showing that vernacular names are a good indicator of genetic distinctiveness in these specific groups of landraces. The discriminant analysis of the principal components also confirmed the absence of distinct clustering between the two groups. We found that enset landraces were clustered irrespective of their use-value, showing no evidence for genetic differentiation between the enset grown for 'medicinal' uses and non-medicinal landraces. This suggests that enset medicinal properties may be restricted to a more limited number of genotypes, might have resulted from the interaction of genotype with the environment or management practice, or partly misreported. The study provides baseline information that promotes further investigations in exploiting the medicinal value of these specific landraces.

14.
Front Plant Sci ; 11: 61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117397

RESUMO

Tef [Eragrostis tef (Zucc.) Trotter] is an important crop in the Horn of Africa, particularly in Ethiopia, where it is a staple food for over 60 million people. However, the productivity of tef remains extremely low in part due to its susceptibility to lodging. Lodging is the displacement of the plant from the upright position, and it is exacerbated by rain, wind and the application of fertilizer. In order to address the issue of global food security, especially in the Horn of Africa, greater insight into the causes of tef lodging is needed. In this study, we combine modeling and biomechanical measurements to compare the properties relating to lodging tolerance in high yielding, improved tef genotypes, and lower yielding natural landraces. Our results indicate that the angle of the panicle contributes to the likelihood of lodging in tef. Varieties with compact panicles and reduced height had increased lodging resistance compared to the other varieties. By comparing different varieties, we found that overall, the landraces of tef lodged less than improved varieties. We constructed a model of stem bending and found that panicle angle was an important determinant of the amount of lodging. The findings from this study provide key information to those involved in tef improvement, especially those interested in lodging tolerance.

15.
Scientifica (Cairo) ; 2018: 1451894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623231

RESUMO

A changing climate, a growing world population, and a reduction in arable land devoted to food production are all problems facing the world food security. The development of crops that can yield under uncertain and extreme climatic and soil growing conditions can play a key role in mitigating these problems. Major crops such as maize, rice, and wheat are responsible for a large proportion of global food production but many understudied crops (commonly known as "orphan crops") including millets, cassava, and cowpea feed millions of people in Asia, Africa, and South America and are already adapted to the local environments in which they are grown. The application of modern genetic and genomic tools to the breeding of these crops can provide enormous opportunities for ensuring world food security but is only in its infancy. In this review, the diversity and types of understudied crops will be introduced, and the beneficial traits of these crops as well as their role in the socioeconomics of Africa will be discussed. In addition, the response of orphan crops to diverse types of abiotic stresses is investigated. A review of the current tools and their application to the breeding of enhanced orphan crops will also be described. Finally, few examples of global efforts on tackling major abiotic constraints in Africa are presented.

17.
J Plant Physiol ; 224-225: 163-172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29656008

RESUMO

Tef [Eragrostis tef (Zucc.) Trotter], a staple food crop in the Horn of Africa and particularly in Ethiopia, has several beneficial agronomical and nutritional properties, including waterlogging and drought tolerance. In this study, we performed microRNA profiling of tef using the Illumina HiSeq 2500 platform, analyzing both shoots and roots of two tef genotypes, one drought-tolerant (Tsedey) and one drought-susceptible (Alba). We obtained more than 10 million filtered reads for each of the 24 sequenced small cDNA libraries. Reads mapping to known miRNAs were more abundant in the root than shoot tissues. Thirteen and 35 miRNAs were significantly modulated in response to drought, in Alba and Tsedey roots, respectively. One miRNA was upregulated under drought conditions in both genotypes. In shoots, nine miRNAs were modulated in common between the two genotypes and all showed similar trends of expression. One-hundred and forty-seven new miRNA mature sequences were identified in silico, 22 of these were detected in all relevant samples and seven were differentially regulated when comparing drought with normal watering. Putative targets of the miRNA regulated under drought in root and shoot tissues were predicted. Among the targets were transcription factors such as CCAAT-HAP2, MADS and NAC. Verification with qRT-PCR revealed that five of six potential targets showed a pattern of expression that was consistent with the correspondent miRNA amount measured by RNA-Seq. In general, candidate miRNAs involved in the post-transcriptional regulation of the tef response to drought could be included in next-generation breeding programs.


Assuntos
Secas , Eragrostis/fisiologia , MicroRNAs/genética , RNA de Plantas/genética , Eragrostis/genética , Genótipo , MicroRNAs/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , RNA de Plantas/metabolismo
18.
Plant Direct ; 2(4): e00056, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31245721

RESUMO

Tef [Eragrostis tef (Zucc.) Trotter], an allotetraploid cereal that is a staple food to over 60 million people in the Horn of Africa, has a high nutritional content and is resistant to many biotic and abiotic stresses such as waterlogging and drought. Three tef genotypes, Alba, Tsedey, and Quncho, were subjected to waterlogging conditions and their growth, physiology, and change in transcript expression were measured with the goal of identifying targets for breeding cultivars with improved waterlogging tolerance. Root and shoot growth and dry weight were observed over 22 days. Stomatal conductance and chlorophyll and carotenoid contents were quantified. Microscopy was used to monitor changes in the stem cross sections. Illumina RNA sequencing was used to obtain the expression profiles of tef under flooding and control conditions and was verified using qPCR. Results indicated differences in growth between the three genotypes. Waterlogged Tsedey plants grew higher and had more root biomass than normally watered Tsedey plants. Quncho and Alba genotypes were more susceptible to the excess moisture stress. The effects of these changes were observed on the plant physiology. Among the three tested tef genotypes, Tsedey formed more aerenchyma than Alba and had accelerated growth under waterlogging. Tsedey and Quncho had constitutive aerenchyma. Genes affecting carbohydrate metabolism, cell growth, response to reactive oxygen species, transport, signaling, and stress responses were found to change under excess moisture stress. In general, these results show the presence of substantial anatomical and physiological differences among tef genotypes when waterlogged during the early growth stage.

19.
Proteomes ; 5(4)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140297

RESUMO

The orphan crop, Eragrostis tef, was subjected to controlled drought conditions to observe the physiological parameters and proteins changing in response to dehydration stress. Physiological measurements involving electrolyte leakage, chlorophyll fluorescence and ultra-structural analysis showed tef plants tolerated water loss to 50% relative water content (RWC) before adverse effects in leaf tissues were observed. Proteomic analysis using isobaric tag for relative and absolute quantification (iTRAQ) mass spectrometry and appropriate database searching enabled the detection of 5727 proteins, of which 211 proteins, including a number of spliced variants, were found to be differentially regulated with the imposed stress conditions. Validation of the iTRAQ dataset was done with selected stress-related proteins, fructose-bisphosphate aldolase (FBA) and the protective antioxidant proteins, monodehydroascorbate reductase (MDHAR) and peroxidase (POX). Western blot analyses confirmed protein presence and showed increased protein abundance levels during water deficit while enzymatic activity for FBA, MDHAR and POX increased at selected RWC points. Gene ontology (GO)-term enrichment and analysis revealed terms involved in biotic and abiotic stress response, signaling, transport, cellular homeostasis and pentose metabolic processes, to be enriched in tef upregulated proteins, while terms linked to reactive oxygen species (ROS)-producing processes under water-deficit, such as photosynthesis and associated light harvesting reactions, manganese transport and homeostasis, the synthesis of sugars and cell wall catabolism and modification, to be enriched in tef downregulated proteins.

20.
Front Plant Sci ; 7: 643, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242844

RESUMO

Tef [Eragrostis tef (Zucc.) Trotter] and finger millet [Eleusine coracana Gaertn] are staple cereal crops in Africa and Asia with several desirable agronomic and nutritional properties. Tef is becoming a life-style crop as it is gluten-free while finger millet has a low glycemic index which makes it an ideal food for diabetic patients. However, both tef and finger millet have extremely low grain yields mainly due to moisture scarcity and susceptibility of the plants to lodging. In this study, the effects of gibberellic acid (GA) inhibitors particularly paclobutrazol (PBZ) on diverse physiological and yield-related parameters were investigated and compared to GA mutants in rice (Oryza sativa L.). The application of PBZ to tef and finger millet significantly reduced the plant height and increased lodging tolerance. Remarkably, PBZ also enhanced the tolerance of both tef and finger millet to moisture deficit. Under moisture scarcity, tef plants treated with PBZ did not exhibit drought-related symptoms and their stomatal conductance was unaltered, leading to higher shoot biomass and grain yield. Semi-dwarf rice mutants altered in GA biosynthesis, were also shown to have improved tolerance to dehydration. The combination of traits (drought tolerance, lodging tolerance and increased yield) that we found in plants with altered GA pathway is of importance to breeders who would otherwise rely on extensive crossing to introgress each trait individually. The key role played by PBZ in the tolerance to both lodging and drought calls for further studies using mutants in the GA biosynthesis pathway in order to obtain candidate lines which can be incorporated into crop-breeding programs to create lodging tolerant and climate-smart crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA