Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 44(14): 3414-3417, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305536

RESUMO

Diffraction puts a fundamental limit on the distance over which a light beam can remain focused. For about 30 years, several techniques to overcome this limit have been demonstrated. Here, we propose a reflective optics, namely, the axiparabola, that allows to extend the production of "diffraction-free" beams to high-peak-power and broadband laser pulses. We first describe the properties of this aspheric optics. We then analyze and compare its performances in numerical simulations and in experiments. Finally, we use it to produce a plasma waveguide that can guide an intense laser pulse over 10 millimeters.

2.
Light Sci Appl ; 11(1): 180, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701390

RESUMO

Laser-plasma accelerators (LPAs) produce electric fields of the order of 100 GV m-1, more than 1000 times larger than those produced by radio-frequency accelerators. These uniquely strong fields make LPAs a promising path to generate electron beams beyond the TeV, an important goal in high-energy physics. Yet, large electric fields are of little benefit if they are not maintained over a long distance. It is therefore of the utmost importance to guide the ultra-intense laser pulse that drives the accelerator. Reaching very high energies is equally useless if the properties of the electron beam change completely from shot to shot, due to the intrinsic lack of stability of the injection process. State-of-the-art laser-plasma accelerators can already address guiding and control challenges separately by tweaking the plasma structures. However, the production of beams that are simultaneously high quality and high energy has yet to be demonstrated. This paper presents a novel experiment, coupling laser-plasma waveguides and controlled injection techniques, facilitating the reliable and efficient acceleration of high-quality electron beams up to 1.1 GeV, from a 50 TW-class laser.

3.
Rev Sci Instrum ; 91(10): 103001, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33138578

RESUMO

We report a straightforward beam splitter in the soft x-ray spectral range using a thin oxidized aluminum foil. As it allows us to monitor reliably shot-to-shot variations in energy and in energy distribution, this beam splitter is of high interest for the simultaneous use of diagnostics for soft x-rays sources. We measure a transmission of 0.5 and a reflectivity of 0.018 at 22.5° of incidence with a soft x-ray laser working at 32.8 nm. These values are in good agreement with the theory. As the theory predicts a reflectivity and a transmission of both 12% at 52.5° of incidence for 32.8 nm, it can also be useful for experiments that require the division and recombination of a beam, for instance, interferometry or pump-probe technique with an intense soft x-ray source.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(5 Pt 2): 056402, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18643171

RESUMO

Relativistic electrons accelerated by laser wakefields can produce x-ray beams from their motion in plasma termed betatron oscillations. Detailed spectral characterization is presented in which the amplitude of the betatron oscillations r is studied by numerical analysis of electron and x-ray spectra measured simultaneously. We find that r reaches as low as 1 mum in agreement with previous studies of radiation based on coherence and far-field spatial profile.

5.
Light Sci Appl ; 6(11): e17086, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30167214

RESUMO

Technology based on high-peak-power lasers has the potential to provide compact and intense radiation sources for a wide range of innovative applications. In particular, electrons that are accelerated in the wakefield of an intense laser pulse oscillate around the propagation axis and emit X-rays. This betatron source, which essentially reproduces the principle of a synchrotron at the millimeter scale, provides bright radiation with femtosecond duration and high spatial coherence. However, despite its unique features, the usability of the betatron source has been constrained by its poor control and stability. In this article, we demonstrate the reliable production of X-ray beams with tunable polarization. Using ionization-induced injection in a gas mixture, the orbits of the relativistic electrons emitting the radiation are reproducible and controlled. We observe that both the signal and beam profile fluctuations are significantly reduced and that the beam pointing varies by less than a tenth of the beam divergence. The polarization ratio reaches 80%, and the polarization axis can easily be rotated. We anticipate a broad impact of the source, as its unprecedented performance opens the way for new applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA