Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557875

RESUMO

Numerous fungal plant pathogens can infect fresh fruits and vegetables during transit and storage conditions. The resulting infections were mainly controlled by synthetic fungicides, but their application has many drawbacks associated with the threatened environment and human health. Therefore, the use of natural plants with antimicrobial potential could be a promising alternative to overcome the side effects of fungicides. In this regard, this study aimed at evaluating the antifungal activity potential of saffron petal extract (SPE) against three mains important fungal pathogens: Rhizopus stolonifer, Penicillium digitatum and Botritys cinerea, which cause rot decay on the tomato, orange and apple fruits, respectively. In addition, the organic composition of SPE was characterized by attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and its biochemical, and gas chromatography-mass spectrometry (GC-MS) analyses were carried out. The obtained results highlighted an increased inhibition rate of the mycelial growth and spore germination of the three pathogenic fungi with increasing SPE concentrations. The mycelial growth and spore germination were completely inhibited at 10% of the SPE for Rhizopus stolonifer and Penicillium digitatum and at 5% for B. cinerea. Interestingly, the in vivo test showed the complete suppression of Rhizopus rot by the SPE at 10%, and a significant reduction of the severity of grey mold disease (37.19%) and green mold, when applied at 5 and 10%, respectively. The FT-IR spectra showed characteristic peaks and a variety of functional groups, which confirmed that SPE contains phenolic and flavonoid components. In addition, The average value of the total phenolic content, flavonoid content and half-maximal inhibitory concentration (IC50) were 3.09 ± 0.012 mg GAE/g DW, 0.92 ± 0.004 mg QE/g DW and 235.15 ± 2.12 µg/mL, respectively. A volatile analysis showed that the most dominant component in the saffron petal is 2(5H)-Furanone (92.10%). Taken together, it was concluded that SPE could be used as an alternative to antioxidant and antifungal compounds for the control of postharvest diseases in fruits.


Assuntos
Produtos Biológicos , Crocus , Fungicidas Industriais , Penicillium , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Fungicidas Industriais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Fungos , Frutas , Produtos Biológicos/farmacologia , Extratos Vegetais/farmacologia
2.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615378

RESUMO

Saffron petals, which are the main by-products of Crocus sativus L. (Iridaceae family), are produced in large quantities and are known for their many beneficial properties. In this regard, this study aims to investigate the phenolic composition and antibacterial properties of hydroethanolic extracts from Crocus sativus L. petals collected from Serghina (province of Boulmane) in Morocco. The phenolic profiles were characterized using high-performance liquid chromatography coupled to a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS). The antibacterial potential was evaluated against four bacterial strains potentially causing food-borne disease (Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, and Listeria monocytogenes) using disc diffusion and broth micro-dilution assays. Results showed that a total of 27 phenolic compounds was detected in the Crocus sativus L. petal extracts, which were assigned to flavonoids (kaempferol, quercetin, isorhamnetin, and myricetin derivatives). The most abundant compound was represented by kaempferol-sophoroside isomer (20.82 mg/g ± 0.152), followed by kaempferol-sophoroside-hexoside (2.63 mg/g ± 0.001). The hydroethanolic extracts of Crocus sativus L. petals demonstrated bactericidal effects against Staphylococcus aureus and Listeria monocetogenes and bacteriostatic effects against Escherichia coli and Salmonella typhimurium. Therefore, the by-product Crocus sativus L. petal extracts might be considered as valuable sources of natural antibacterial agents with potential applications in the food and pharmaceutical industries.


Assuntos
Crocus , Crocus/química , Quempferóis/química , Flavonoides/química , Antioxidantes/análise , Fenóis , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Microb Pathog ; 139: 103914, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31811889

RESUMO

This study aimed at evaluating the antagonistic activity of 16 bacterial strains for the control of brown rot disease caused by Monilinia fructigena, and M. laxa under in vitro and a semi-commercial large-scale trial. These bacterial antagonists' belonging to the genera Alcaligenes, Bacillus, Brevibacterium, Pantoea, Pseudomonas, and Serratia were previously proven effective for control of fire blight of apple. The in vitro dual culture bioassay showed the highest inhibition rates of mycelial growth ranging from 55 to 95% and from 43 to 94% for M. fructigena and M. laxa, respectively. The in vivo bioassay showed moderate and strong inhibition for M. fructigena and M. laxa, respectively. The inhibition rates were dependent on incubation time as well as pathogen virulence. The free-cell bacterial filtrate revealed substantial mycelial growth inhibition ranging from 66 to 86%. The inhibition of conidial germination was from 32 to 78%, suggesting the involvement of metabolites in their biocontrol activity. The antifungal effect of the volatile compounds (VCOs) was observed for all bacteria with mycelial inhibition varying from 12 to 70%. Overall, their efficacy was substantially affected by the nature of the bacterial strains and the modes of action. Taken together, these results underscore that ACBC1 and SF14 for M. fructigena and SP10 and ACBP1 for M. laxa were the most effective bacterial strains. These strains were confirmed effective in a semi-commercial large-scale trial. Interestingly, their efficacies were found to be comparable to those of both commercial BCAs (B. subtilis Y1336 and P. agglomerans P10c), but slightly lower than thiophanate-methyl fungicide. The ability of most bacterial strains to produce lytic enzymes (Amylase, Protease or Cellulase) and lipopeptides (bacillomycin, fengycin, iturin and surfactin) was demonstrated by biochemical and molecular analyzes. Therefore, our findings suggest that the bacterial antagonists ACBC1, SF14, SP10 and ACBP1, have the potential to prevent brown rot disease.


Assuntos
Alcaligenes faecalis/química , Ascomicetos/fisiologia , Bacillus amyloliquefaciens/química , Fungicidas Industriais/farmacologia , Pantoea/química , Doenças das Plantas/microbiologia , Alcaligenes faecalis/metabolismo , Bacillus amyloliquefaciens/metabolismo , Frutas/microbiologia , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Malus/microbiologia , Pantoea/metabolismo
4.
Microb Pathog ; 117: 7-15, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428423

RESUMO

The effectiveness of antagonistic bacteria to control Erwinia amylovora was evaluated under in vitro and field conditions. Among 61 bacteria isolated from soil and flowers of fire blight host plants of different Moroccan areas, 20 bacterial isolates showed higher antagonistic activity against the pathogen during agar-diffusion-test, attached blossoms assay and in a bioassay on immature pear fruits. Effective isolates were identified by using biochemical tests and 16 S rRNA genes sequencing. These isolates were grouped into the following genera: Alcaligenes (ACBC1), Pantoea (ACBC2, ACBP1, and ACBP2), Serratia (HC4), Brevibacterium (SF3, SF4, SF7, and SF15), Pseudomonas (SP9), and Bacillus (CPa12, CPa2, HF6, JB2, LMR2, SF14, SF16, SP10, SP13, and SP18). Furthermore, isolates were reported in the NCBI nucleotide sequence database (Genbank) under the accession numbers from KY357285 to KY357304. A 2-year field trials consisted of spray treatments with different bacterial antagonists was conducted on the susceptible apple cultivars 'Gala', 'Golden Parsi' and 'Golden Smoothee'. Their efficacies were evaluated 15 days post-inoculation on detached blossoms and were ranged from 54.6 to 95.0% for 11 strains, most of them were slightly better or better than that obtained with commercial bacterial strains P10c (66%) and QST713 (63%). In field trials, the most effective were P. agglomerans ACBP2, B. amyloliquefaciens LMR2, B. halotolerans (SF3 and SF4), and B. mojarvensis SF16. In addition, effective bacterial isolates did not show the pathogenicity signs towards plant tissue and are, therefore, considered as potential candidates to be integrated in actives ingredients of microbial formulation for the effective control of Fire Blight.


Assuntos
Antibiose , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Erwinia amylovora/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/análise , Flores/microbiologia , Frutas/microbiologia , Malus/microbiologia , Marrocos , Filogenia , Pyrus/microbiologia , RNA Ribossômico 16S/genética , Microbiologia do Solo
5.
J Gen Virol ; 97(12): 3433-3445, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902403

RESUMO

Recombination events are frequently inferred from the increasing number of sequenced viral genomes, but their impact on natural viral populations has rarely been evidenced. TYLCV-IS76 is a recombinant (Begomovirus,Geminiviridae) between the Israel strain of tomato yellow leaf curl virus (TYLCV-IL) and the Spanish strain of tomato yellow leaf curl Sardinia virus (TYLCSV-ES) that was generated most probably in the late 1990s in southern Morocco (Souss). Its emergence in the 2000s coincided with the increasing use of resistant tomato cultivars bearing the Ty-1 gene, and led eventually to the entire displacement of both parental viruses in the Souss. Here, we provide compelling evidence that this viral population shift was associated with selection of TYLCV-IS76 viruses in tomato plants and particularly in Ty-1-bearing cultivars. Real-time quantitative PCR (qPCR) monitoring revealed that TYLCV-IS76 DNA accumulation in Ty-1-bearing plants was significantly higher than that of representatives of the parental virus species in single infection or competition assays. This advantage of the recombinant in Ty-1-bearing plants was not associated with a fitness cost in a susceptible, nearly isogenic, cultivar. In competition assays in the resistant cultivar, the DNA accumulation of the TYLCV-IL clone - the parent less affected by the Ty-1 gene in single infection - dropped below the qPCR detection level at 120 days post-infection (p.i.) and below the whitefly vector (Bemisia tabaci) transmissibility level at 60 days p.i. The molecular basis of the selective advantage of TYLCV-IS76 is discussed in relation to its non-canonical recombination pattern, and the RNA-dependent RNA polymerase encoded by the Ty-1 gene.


Assuntos
Begomovirus/genética , Doenças das Plantas/virologia , Recombinação Genética , Solanum lycopersicum/virologia , Animais , Begomovirus/fisiologia , Hemípteros/fisiologia , Hemípteros/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Marrocos
6.
Folia Microbiol (Praha) ; 69(3): 465-489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38393576

RESUMO

Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.


Assuntos
Lactobacillales , Desenvolvimento Vegetal , Lactobacillales/metabolismo , Lactobacillales/crescimento & desenvolvimento , Plantas/microbiologia , Biodegradação Ambiental , Agricultura/métodos , Microbiologia do Solo
7.
Microorganisms ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38674613

RESUMO

Cercospora beticola Sacc. is an ascomycete pathogen that causes Cercospora leaf spot in sugar beets (Beta vulgaris L.) and other related crops. It can lead to significant yield losses if not effectively managed. This study aimed to assess rhizosphere bacteria from sugar beet soil as a biological control agent against C. beticola and evaluate their effect on B. vulgaris. Following a dual-culture screening, 18 bacteria exhibiting over 50% inhibition were selected, with 6 of them demonstrating more than 80% control. The bacteria were identified by sequencing the 16S rRNA gene, revealing 12 potential species belonging to 6 genera, including Bacillus, which was represented by 4 species. Additionally, the biochemical and molecular properties of the bacteria were characterized in depth, as well as plant growth promotion. PCR analysis of the genes responsible for producing antifungal metabolites revealed that 83%, 78%, 89%, and 56% of the selected bacteria possessed bacillomycin-, iturin-, fengycin-, and surfactin-encoding genes, respectively. Infrared spectroscopy analysis confirmed the presence of a lipopeptide structure in the bacterial supernatant filtrate. Subsequently, the bacteria were assessed for their effect on sugar beet plants in controlled conditions. The bacteria exhibited notable capabilities, promoting growth in both roots and shoots, resulting in significant increases in root length and weight and shoot length. A field experiment with four bacterial candidates demonstrated good performance against C. beticola compared to the difenoconazole fungicide. These bacteria played a significant role in disease control, achieving a maximum efficacy of 77.42%, slightly below the 88.51% efficacy attained with difenoconazole. Additional field trials are necessary to verify the protective and growth-promoting effects of these candidates, whether applied individually, combined in consortia, or integrated with chemical inputs in sugar beet crop production.

8.
Plants (Basel) ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771751

RESUMO

Spiroplasma citri, a helical motile, wall-less, and cultivable microorganism of the class Mollicutes, is the agent of the citrus stubborn disease. There is currently a lack of data about the presence of this pathogen in Moroccan citrus orchards. This study aims to validate serological and molecular methods for routine S. citri diagnosis in Moroccan citrus groves. To provide an update on the present status of the outbreak of the pathogen in Moroccan citrus orchards, a survey of S. citri was conducted in the main citrus-growing regions of Morocco. A total of 575 leaf samples were collected from citrus trees with symptoms attributable to S. citri infection. Samples were collected during 2020 and 2021 from 23 citrus orchards. The presence of S. citri was tested in all samples using the double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Using this method, 57 samples were found to be infected with S. citri, 41 samples had doubtful results, and the remaining samples were negative. To corroborate the results of the DAS-ELISA test, 148 samples were chosen for additional molecular testing using conventional polymerase chain reaction (PCR) and real-time PCR (qPCR) based on specific primer pairs targeting three different genes (putative adhesion-like gene P58, putative adhesion gene P89, and spiralin gene). Using primers that target the putative adhesion-like gene P58, S. citri was detected by conventional and real-time PCR amplification from plant tissue with differing degrees of specificity. The results allowed us to determine the incidence of S. citri in all Moroccan citrus orchards, with a wide range of positive samples varying from 6.5% to 78%, and to show that molecular tests, particularly real-time PCR assays that target the putative adhesion-like gene P58, are the most sensitive for making an accurate diagnosis of S. citri. Indeed, the real-time PCR with P58-targeting primers yielded positive results from all positive and doubtful ELISA samples as well as some negative samples, with an OD value close to 1.5× times healthy samples, thus demonstrating a high sensibility of this technique.

9.
Microorganisms ; 11(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36985299

RESUMO

Tomato is one of the world's most commonly grown and consumed vegetables. However, it can be attacked by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm), which causes bacterial canker on tomato plants, resulting in significant financial losses in field production and greenhouses worldwide. The current management strategies rely principally on the application of various chemical pesticides and antibiotics, which represent a real danger to the environment and human safety. Plant growth-promoting rhizobacteria (PGPR) have emerged as an attractive alternative to agrochemical crop protection methods. PGPR act through several mechanisms to support plant growth and performance, while also preventing pathogen infection. This review highlights the importance of bacterial canker disease and the pathogenicity of Cmm. We emphasize the application of PGPR as an ecological and cost-effective approach to the biocontrol of Cmm, specifying the complex modes of biocontrol agents (BCAs), and presenting their direct/indirect mechanisms of action that enable them to effectively protect tomato crops. Pseudomonas and Bacillus are considered to be the most interesting PGPR species for the biological control of Cmm worldwide. Improving plants' innate defense mechanisms is one of the main biocontrol mechanisms of PGPR to manage bacterial canker and to limit its occurrence and gravity. Herein, we further discuss elicitors as a new management strategy to control Cmm, which are found to be highly effective in stimulating the plant immune system, decreasing disease severity, and minimizing pesticide use.

10.
Microorganisms ; 10(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056632

RESUMO

Citrus stubborn was initially observed in California in 1915 and was later proven as a graft-transmissible disease in 1942. In the field, diseased citrus trees have compressed and stunted appearances, and yield poor-quality fruits with little market value. The disease is caused by Spiroplasma citri, a phloem-restricted pathogenic mollicute, which belongs to the Spiroplasmataceae family (Mollicutes). S. citri has the largest genome of any Mollicutes investigated, with a genome size of roughly 1780 Kbp. It is a helical, motile mollicute that lacks a cell wall and peptidoglycan. Several quick and sensitive molecular-based and immuno-enzymatic pathogen detection technologies are available. Infected weeds are the primary source of transmission to citrus, with only a minor percentage of transmission from infected citrus to citrus. Several phloem-feeding leafhopper species (Cicadellidae, Hemiptera) support the natural spread of S. citri in a persistent, propagative manner. S. citri-free buds are used in new orchard plantings and bud certification, and indexing initiatives have been launched. Further, a quarantine system for newly introduced types has been implemented to limit citrus stubborn disease (CSD). The present state of knowledge about CSD around the world is summarized in this overview, where recent advances in S. citri detection, characterization, control and eradication were highlighted to prevent or limit disease spread through the adoption of best practices.

11.
Microorganisms ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014053

RESUMO

Several diseases affect the productivity of olive trees, including root rot disease caused by Pythium genera. Chemical fungicides, which are often used to manage this disease, have harmful side effects on humans as well as environmental components. Biological management is a promising control approach that has shown its great potential as an efficient eco-friendly alternative to treating root rot diseases. In the present study, the antagonistic activity of ten bacterial isolates was tested both in vitro and in planta against Pythium schmitthenneri, the causal agent of olive root rot disease. These bacterial isolates belonging to the genera Alcaligenes, Pantoea, Bacillus, Sphingobacterium, and Stenotrophomonas were chosen for their potential antimicrobial effects against many pathogens. Results of the in vitro confrontation bioassay revealed a high reduction of mycelial growth exceeding 80%. The antifungal effect of the volatile organic compounds (VOCs) was observed for all the isolates, with mycelial inhibition rates ranging from 28.37 to 70.32%. Likewise, the bacterial cell-free filtrates showed important inhibition of the mycelial growth of the pathogen. Overall, their efficacy was substantially affected by the nature of the bacterial strains and their modes of action. A greenhouse test was then carried out to validate the in vitro results. Interestingly, two bacterial isolates, Alcaligenes faecalis ACBC1 and Bacillus amyloliquefaciens SF14, were the most successful in managing the disease. Our findings suggested that these two antagonistic bacterial isolates have promising potential as biocontrol agents of olive root rot disease.

12.
J Fungi (Basel) ; 8(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736078

RESUMO

Grapevine trunk diseases (GTD) are currently one of the most devastating and challenging diseases in viticulture, leading to considerable yield losses and a remarkable decline in grapevine quality. The identification of the causal agents is the cornerstone of an efficient approach to fighting against fungal diseases in a sustainable, non-chemical manner. This review attempts to describe and expose the symptoms of each pathology related to GTD, the modes of transmission, and the harmfulness of recently reported agents. Special attention was given to new diagnostic tests and technologies, grapevine defense mechanisms, molecular mechanisms of endophytes fungal colonization, and management strategies used to control these threats. The present extended review is, therefore, an updated state-of-the-art report on the progress in the management of vineyards.

13.
Plants (Basel) ; 11(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015470

RESUMO

A decline of various grapevines (Vitis vinifera L.) in the province of Doukkala in Morocco was observed in 2021. The causal pathogen was identified as Lasiodiplodia viticola based on morphological characteristics and phylogenetic analysis of the internal transcribed region (ITS), the ß-tubulin gene (TUB) and calmodulin (cmdA). Koch's postulates were confirmed by successful re-isolation of L. viticola from plants inoculated with the pathogen under controlled conditions. The disease was shown to be prevalent in Bni Hilal (71.43%), Laamria (60%), and Boulaouane (40%) districts, but was quasi-absent in Lmechrek. To understand the dominance of L. viticola as one of the grapevine trunk pathogens, effects of temperature (10-40 °C) and pH (pH 3-pH 12) on growth and sporulation were investigated. The species were able to grow in a range of temperatures ranging from 15 to 40°C and showed a higher growth rate at 35 °C. The fungus were also characterized by a broad optimum pH ranging between 3-12. This study is the first report dealing with L. viticola associated with grapevine trunk diseases in Morocco. Additional studies are therefore required to understand the high occurrence of this disease in vineyards, which is likely due to climate changes. A good understanding of this complex disease might help to develop a reliable and sustainable preventive control strategy.

14.
Plants (Basel) ; 10(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926049

RESUMO

Citrus trees face threats from several diseases that affect its production, in particular dry root rot (DRR). DRR is a multifactorial disease mainly attributed to Neocosmospora (Fusarium) solani and other several species of Neocosmospora and Fusarium spp. Nowadays, biological control holds a promising control strategy that showed its great potential as a reliable eco-friendly method for managing DRR disease. In the present study, antagonist rhizobacteria isolates were screened based on in vitro dual culture bioassay with N. solani. Out of 210 bacterial isolates collected from citrus rhizosphere, twenty isolates were selected and identified to the species level based on the 16S rRNA gene. Molecular identification based on 16S rRNA gene revealed nine species belonging to Bacillus, Stenotrophomonas, and Sphingobacterium genus. In addition, their possible mechanisms involved in biocontrol and plant growth promoting traits were also investigated. Results showed that pectinase, cellulose, and chitinase were produced by eighteen, sixteen, and eight bacterial isolates, respectively. All twenty isolates were able to produce amylase and protease, only four isolates produced hydrogen cyanide, fourteen isolates have solubilized tricalcium phosphate, and ten had the ability to produce indole-3-acetic acid (IAA). Surprisingly, antagonist bacteria differed substantially in their ability to produce antimicrobial substances such as bacillomycin (five isolates), iturin (ten isolates), fengycin (six isolates), surfactin (fourteen isolates), and bacteriocin (subtilosin A (six isolates)). Regarding the PGPR capabilities, an increase in the growth of the bacterial treated canola plants, used as a model plant, was observed. Interestingly, both bacterial isolates Bacillus subtilis K4-4 and GH3-8 appear to be more promising as biocontrol agents, since they completely suppressed the disease in greenhouse trials. Moreover, these antagonist bacteria could be used as bio-fertilizer for sustainable agriculture.

15.
Microorganisms ; 8(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781662

RESUMO

Citrus psorosis was reported for the first time in Florida in 1896 and was confirmed as a graft-transmissible disease in 1934. Citrus psorosis virus (CPsV) is the presumed causal agent of this disease. It is considered as a type species of the genus Ophiovirus, within the family Aspiviridae. CPsV genome is a negative single-stranded RNA (-ssRNA) with three segments. It has a coat protein (CP) of 48 kDa and its particles are non-enveloped with naked filamentous nucleocapsids existing as either circular open structures or collapsed pseudo-linear forms. Numerous rapid and sensitive immuno-enzymatic and molecular-based detection methods specific to CPsV are available. CPsV occurrence in key citrus growing regions across the world has been spurred the establishment of the earliest eradication and virus-free budwood programs. Despite these efforts, CPsV remains a common and serious challenge in several countries and causes a range of symptoms depending on the isolate, the cultivar, and the environment. CPsV can be transmitted mechanically to some herbaceous hosts and back to citrus. Although CPsV was confirmed to be seedborne, the seed transmission is not efficient. CPsV natural spread has been increasing based on both CPsV surveys detection and specific CPsV symptoms monitoring. However, trials to ensure its transmission by a soil-inhabiting fungus and one aphid species have been unsuccessful. Psorosis disease control is achieved using CPsV-free buds for new plantations, launching budwood certification and indexing programs, and establishing a quarantine system for the introduction of new varieties. The use of natural resistance to control CPsV is very challenging. Transgenic resistance to at least some CPsV isolates is now possible in at least some sweet orange varieties and constitutes a promising biotechnological alternative to control CPsV. This paper provides an overview of the most remarkable achievements in CPsV research that could improve the understanding of the disease and lead the development of better control strategies.

16.
C R Biol ; 341(6): 343-348, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30032780

RESUMO

Rhizomania is one of serious threat to sugar beet production in Morocco and in several parts of the world. This disease led to a statistically significant decrease in the quality and yield of sugar beet plantations. Therefore, this study aimed at comparing the efficacy of six commonly used RNA extraction methods for the detection, recovery of RNA of beet necrotic yellow vein virus (BNYVV) and removal of amplification inhibitors by reverse transcription-polymerase chain reaction (RT-PCR). The efficiency of these extraction methods was then compared to that of a commercial isolation kit with high content of phenolic compounds. The results showed that the extraction with the lithium chloride technique, the commercial kit, and direct and membrane spotting crude extract methods were found effective in yielding a higher purity and a higher concentration of RNA when compared to the other tested methods. Extraction with the lithium chloride technique and the Qiagen kit (RNeasy Plant Mini Kit) allowed the most intense band, whereas the CTAB method has generated the least intense band. Furthermore, the silica capture extraction method did not yield any RNA after extraction and electrophoresis. Consequently, it was concluded that, of these six methods, the lithium chloride technique and the Qiagen kit are the most appropriate for the extraction of viral RNA from sugar beet samples prior to RT-PCR for detecting BNYVV.


Assuntos
Beta vulgaris/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Marrocos , Raízes de Plantas , RNA/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA