Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
EMBO J ; 39(20): e105693, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954517

RESUMO

To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the "high-performance secretome protein enrichment with click sugars" (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS-induced neuroinflammation and to establish the cell type-resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer-linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type-specific biomarkers for CNS diseases.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Proteômica/métodos , Software , Proteínas ADAM/líquido cefalorraquidiano , Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Animais , Antígenos CD/líquido cefalorraquidiano , Antígenos CD/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/líquido cefalorraquidiano , Encéfalo/citologia , Células Cultivadas , Proteínas do Líquido Cefalorraquidiano , Cromatografia Líquida , Ontologia Genética , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/metabolismo , Análise de Componente Principal , Proteoma/metabolismo , Espectrometria de Massas em Tandem
2.
Cell Mol Life Sci ; 80(9): 262, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37597109

RESUMO

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a deNEDDylase controlling ubiquitination activity of cullin-RING-E3 ligases (CRLs) and thus the levels of key cellular proteins. While the CSN and its catalytic subunit CSN5 have been extensively studied in cancer, its role in inflammatory and neurological diseases is less understood. Following verification that CSN5 is expressed in mouse and human brain, here we studied the role of the CSN in neuroinflammation and ischemic neuronal damage employing models of relevant brain-resident cell types, an ex vivo organotypic brain slice culture model, and the CRL NEDDylation state-modifying drugs MLN4924 and CSN5i-3, which mimic and inhibit, respectively, CSN5 deNEDDylase activity. Untargeted mass spectrometry-based proteomics revealed that MLN4924 and CSN5i-3 substantially alter the microglial proteome, including inflammation-related proteins. Applying these drugs and mimicking microglial and endothelial inflammation as well as ischemic neuronal stress by TNF and oxygen-glucose-deprivation/reoxygenation (OGD/RO) treatment, respectively, we could link CSN5/CSN-mediated cullin deNEDDylation to reduction of microglial inflammation, attenuated cerebral endothelial inflammation, improved barrier integrity, as well as protection from ischemic stress-induced neuronal cell death. Specifically, MLN4924 reduced phagocytic activity, motility, and inflammatory cytokine expression of microglial cells, and this was linked to inhibition of inflammation-induced NF-κB and Akt signaling. Inversely, Csn5 knockdown and CSN5i-3 increased NF-κB signaling. Moreover, MLN4924 abrogated TNF-induced NF-κB signaling in cerebral microvascular endothelial cells (hCMECs) and rescued hCMEC monolayers from OGD/RO-triggered barrier leakage, while CSN5i-3 exacerbated permeability. In an ex vivo organotypic brain slice model of ischemia/reperfusion stress, MLN4924 protected from neuronal death, while CSN5i-3 impaired neuronal survival. Neuronal damage was attributable to microglial activation and inflammatory cytokines, as indicated by microglial shape tracking and TNF-blocking experiments. Our results indicate a protective role of the CSN in neuroinflammation via brain-resident cell types involved in ischemic brain disease and implicate CSN activity-mimicking deNEDDylating drugs as potential therapeutics.


Assuntos
NF-kappa B , Doenças Neuroinflamatórias , Humanos , Animais , Camundongos , Complexo do Signalossomo COP9 , Proteínas Culina , Células Endoteliais , Encéfalo , Inflamação/tratamento farmacológico , Citocinas
3.
J Neuroinflammation ; 20(1): 47, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829182

RESUMO

AIM: We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS: We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS: Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS: Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.


Assuntos
Fluordesoxiglucose F18 , Microglia , Animais , Camundongos , Microglia/metabolismo , Fluordesoxiglucose F18/metabolismo , Progranulinas/metabolismo , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
4.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373253

RESUMO

Neuroinflammation is one disease hallmark on the road to neurodegeneration in primary tauopathies. Thus, immunomodulation might be a suitable treatment strategy to delay or even prevent the occurrence of symptoms and thus relieve the burden for patients and caregivers. In recent years, the peroxisome proliferator-activated receptor γ (PPARγ) has received increasing attention as it is immediately involved in the regulation of the immune system and can be targeted by the anti-diabetic drug pioglitazone. Previous studies have shown significant immunomodulation in amyloid-ß (Aß) mouse models by pioglitazone. In this study, we performed long-term treatment over six months in P301S mice as a tauopathy model with either pioglitazone or placebo. We performed serial 18 kDa translocator protein positron-emission-tomography (TSPO-PET) imaging and terminal immunohistochemistry to assess microglial activation during treatment. Tau pathology was quantified via immunohistochemistry at the end of the study. Long-term pioglitazone treatment had no significant effect on TSPO-PET, immunohistochemistry read-outs of microglial activation, or tau pathology levels in P301S mice. Thus, we conclude that pioglitazone modifies the time course of Aß-dependent microglial activation, but does not significantly modulate microglial activation in response to tau pathology.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Pioglitazona/farmacologia , Microglia/metabolismo , Tauopatias/metabolismo , Peptídeos beta-Amiloides/metabolismo , PPAR gama/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo
5.
Neuroimage ; 230: 117707, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385560

RESUMO

BACKGROUND: In Alzheimer`s disease (AD), regional heterogeneity of ß-amyloid burden and microglial activation of individual patients is a well-known phenomenon. Recently, we described a high incidence of inter-individual regional heterogeneity in terms of asymmetry of plaque burden and microglial activation in ß-amyloid mouse models of AD as assessed by positron-emission-tomography (PET). We now investigate the regional associations between amyloid plaque burden, microglial activation, and impaired spatial learning performance in transgenic mice in vivo. METHODS: In 30 AppNL-G-F mice (15 female, 15 male) we acquired cross-sectional 18 kDa translocator protein (TSPO-PET, 18F-GE-180) and ß-amyloid-PET (18F-florbetaben) scans at ten months of age. Control data were obtained from age- and sex-matched C57BI/6 wild-type mice. We assessed spatial learning (i.e. Morris water maze) within two weeks of PET scanning and correlated the principal component of spatial learning performance scores with voxel-wise ß-amyloid and TSPO tracer uptake maps in AppNL-G-F mice, controlled for age and sex. In order to assess the effects of hemispheric asymmetry, we also analyzed correlations of spatial learning performance with tracer uptake in bilateral regions of interest for frontal cortex, entorhinal/piriform cortex, amygdala, and hippocampus, using a regression model. We tested the correlation between regional asymmetry of PET biomarkers with individual spatial learning performance. RESULTS: Voxel-wise analyses in AppNL-G-F mice revealed that higher TSPO-PET signal in the amygdala, entorhinal and piriform cortices, the hippocampus and the hypothalamus correlated with spatial learning performance. Region-based analysis showed significant correlations between TSPO expression in the right entorhinal/piriform cortex and the right amygdala and spatial learning performance, whereas there were no such correlations in the left hemisphere. Right lateralized TSPO expression in the amygdala predicted better performance in the Morris water maze (ß = -0.470, p = 0.013), irrespective of the global microglial activation and amyloid level. Region-based results for amyloid-PET showed no significant associations with spatial learning. CONCLUSION: Elevated microglial activation in the right amygdala-entorhinal-hippocampal complex of AppNL-G-F mice is associated with better spatial learning. Our findings support a protective role of microglia on cognitive function when they highly express TSPO in specific brain regions involved in spatial memory.


Assuntos
Tonsila do Cerebelo/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Córtex Entorrinal/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo , Aprendizagem Espacial/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/biossíntese , Receptores de GABA/genética
6.
EMBO J ; 36(5): 583-603, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007893

RESUMO

Alzheimer's disease (AD) is characterized by deposition of amyloid plaques, neurofibrillary tangles, and neuroinflammation. In order to study microglial contribution to amyloid plaque phagocytosis, we developed a novel ex vivo model by co-culturing organotypic brain slices from up to 20-month-old, amyloid-bearing AD mouse model (APPPS1) and young, neonatal wild-type (WT) mice. Surprisingly, co-culturing resulted in proliferation, recruitment, and clustering of old microglial cells around amyloid plaques and clearance of the plaque halo. Depletion of either old or young microglial cells prevented amyloid plaque clearance, indicating a synergistic effect of both populations. Exposing old microglial cells to conditioned media of young microglia or addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sufficient to induce microglial proliferation and reduce amyloid plaque size. Our data suggest that microglial dysfunction in AD may be reversible and their phagocytic ability can be modulated to limit amyloid accumulation. This novel ex vivo model provides a valuable system for identification, screening, and testing of compounds aimed to therapeutically reinforce microglial phagocytosis.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Microglia/metabolismo , Placa Amiloide/metabolismo , Animais , Proliferação de Células , Técnicas de Cocultura , Meios de Cultivo Condicionados , Camundongos , Microglia/fisiologia , Técnicas de Cultura de Órgãos
7.
Nature ; 526(7573): 443-7, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26322584

RESUMO

Alzheimer disease (AD) is characterized by the accumulation of amyloid plaques, which are predominantly composed of amyloid-ß peptide. Two principal physiological pathways either prevent or promote amyloid-ß generation from its precursor, ß-amyloid precursor protein (APP), in a competitive manner. Although APP processing has been studied in great detail, unknown proteolytic events seem to hinder stoichiometric analyses of APP metabolism in vivo. Here we describe a new physiological APP processing pathway, which generates proteolytic fragments capable of inhibiting neuronal activity within the hippocampus. We identify higher molecular mass carboxy-terminal fragments (CTFs) of APP, termed CTF-η, in addition to the long-known CTF-α and CTF-ß fragments generated by the α- and ß-secretases ADAM10 (a disintegrin and metalloproteinase 10) and BACE1 (ß-site APP cleaving enzyme 1), respectively. CTF-η generation is mediated in part by membrane-bound matrix metalloproteinases such as MT5-MMP, referred to as η-secretase activity. η-Secretase cleavage occurs primarily at amino acids 504-505 of APP695, releasing a truncated ectodomain. After shedding of this ectodomain, CTF-η is further processed by ADAM10 and BACE1 to release long and short Aη peptides (termed Aη-α and Aη-ß). CTFs produced by η-secretase are enriched in dystrophic neurites in an AD mouse model and in human AD brains. Genetic and pharmacological inhibition of BACE1 activity results in robust accumulation of CTF-η and Aη-α. In mice treated with a potent BACE1 inhibitor, hippocampal long-term potentiation was reduced. Notably, when recombinant or synthetic Aη-α was applied on hippocampal slices ex vivo, long-term potentiation was lowered. Furthermore, in vivo single-cell two-photon calcium imaging showed that hippocampal neuronal activity was attenuated by Aη-α. These findings not only demonstrate a major functionally relevant APP processing pathway, but may also indicate potential translational relevance for therapeutic strategies targeting APP processing.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/citologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Neurônios/fisiologia , Proteólise , Proteínas ADAM/metabolismo , Proteína ADAM10 , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Sinalização do Cálcio , Modelos Animais de Doenças , Feminino , Hipocampo/enzimologia , Hipocampo/fisiologia , Humanos , Técnicas In Vitro , Potenciação de Longa Duração , Masculino , Metaloproteinases da Matriz Associadas à Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Peso Molecular , Neuritos/enzimologia , Neuritos/metabolismo , Neurônios/enzimologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Placa Amiloide , Processamento de Proteína Pós-Traducional , Análise de Célula Única
8.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948052

RESUMO

Niemann-Pick type C disease (NPC) is a rare inherited neurodegenerative disorder characterized by an accumulation of intracellular cholesterol within late endosomes and lysosomes due to NPC1 or NPC2 dysfunction. In this work, we tested the hypothesis that retromer impairment may be involved in the pathogenesis of NPC and may contribute to increased amyloidogenic processing of APP and enhanced BACE1-mediated proteolysis observed in NPC disease. Using NPC1-null cells, primary mouse NPC1-deficient neurons and NPC1-deficient mice (BALB/cNctr-Npc1m1N), we show that retromer function is impaired in NPC. This is manifested by altered transport of the retromer core components Vps26, Vps35 and/or retromer receptor sorLA and by retromer accumulation in neuronal processes, such as within axonal swellings. Changes in retromer distribution in NPC1 mouse brains were observed already at the presymptomatic stage (at 4-weeks of age), indicating that the retromer defect occurs early in the course of NPC disease and may contribute to downstream pathological processes. Furthermore, we show that cholesterol depletion in NPC1-null cells and in NPC1 mouse brains reverts retromer dysfunction, suggesting that retromer impairment in NPC is mechanistically dependent on cholesterol accumulation. Thus, we characterized retromer dysfunction in NPC and propose that the rescue of retromer impairment may represent a novel therapeutic approach against NPC.


Assuntos
Colesterol/metabolismo , Mutação com Perda de Função , Neurônios/metabolismo , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/genética , Animais , Células CHO , Células Cultivadas , Cricetulus , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neurônios/citologia , Doença de Niemann-Pick Tipo C/metabolismo , Cultura Primária de Células , Receptores de LDL/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
EMBO J ; 35(21): 2350-2370, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27621269

RESUMO

Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased ß2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Neurônios/metabolismo , Receptor ErbB-4/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Humanos , Transporte Proteico , Ratos , Receptor ErbB-4/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
10.
Glia ; 67(5): 985-998, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667091

RESUMO

The investigation of amyloid precursor protein (APP) has been mainly confined to its neuronal functions, whereas very little is known about its physiological role in astrocytes. Astrocytes exhibit a particular morphology with slender extensions protruding from somata and primary branches. Along these fine extensions, spontaneous calcium transients occur in spatially restricted microdomains. Within these microdomains mitochondria are responsible for local energy supply and Ca2+ buffering. Using two-photon in vivo Ca2+ imaging, we report a significant decrease in the density of active microdomains, frequency of spontaneous Ca2+ transients and slower Ca2+ kinetics in mice lacking APP. Mechanistically, these changes could be potentially linked to mitochondrial malfunction as our in vivo and in vitro data revealed severe, APP-dependent structural mitochondrial fragmentation in astrocytes. Functionally, such mitochondria exhibited prolonged kinetics and morphology dependent signal size of ATP-induced Ca2+ transients. Our results highlight a prominent role of APP in the modulation of Ca2+ activity in astrocytic microdomains whose precise functioning is crucial for the reinforcement and modulation of synaptic function. This study provides novel insights in APP physiological functions which are important for the understanding of the effects of drugs validated in Alzheimer's disease treatment that affect the function of APP.


Assuntos
Precursor de Proteína beta-Amiloide/deficiência , Astrócitos/ultraestrutura , Encéfalo/citologia , Cálcio/metabolismo , Microdomínios da Membrana/metabolismo , Mitocôndrias/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/ultraestrutura , Transdução Genética , Transfecção
11.
EMBO Rep ; 18(7): 1186-1198, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483841

RESUMO

Sequence variations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to an increased risk for neurodegenerative disorders such as Alzheimer's disease and frontotemporal lobar degeneration. In the brain, TREM2 is predominantly expressed in microglia. Several disease-associated TREM2 variants result in a loss of function by reducing microglial phagocytosis, impairing lipid sensing, preventing binding of lipoproteins and affecting shielding of amyloid plaques. We here investigate the consequences of TREM2 loss of function on the microglia transcriptome. Among the differentially expressed messenger RNAs in wild-type and Trem2-/- microglia, gene clusters are identified which represent gene functions in chemotaxis, migration and mobility. Functional analyses confirm that loss of TREM2 impairs appropriate microglial responses to injury and signals that normally evoke chemotaxis on multiple levels. In an ex vivo organotypic brain slice assay, absence of TREM2 reduces the distance migrated by microglia. Moreover, migration towards defined chemo-attractants is reduced upon ablation of TREM2 and can be rescued by TREM2 re-expression. In vivo, microglia lacking TREM2 migrate less towards injected apoptotic neurons, and outgrowth of microglial processes towards sites of laser-induced focal CNS damage in the somatosensory cortex is slowed. The apparent lack of chemotactic stimulation upon depletion of TREM2 is consistent with a stable expression profile of genes characterizing the homoeostatic signature of microglia.


Assuntos
Quimiotaxia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Microglia/fisiologia , Neurônios/patologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Células Cultivadas , Demência Frontotemporal , Perfilação da Expressão Gênica , Humanos , Mutação com Perda de Função , Células Mieloides , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Fagocitose
12.
Alzheimers Dement ; 15(3): 453-464, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30442540

RESUMO

INTRODUCTION: Murine microglia expressing the Alzheimer's disease-linked TREM2R47H mutation display variable decrease in phagocytosis, while impaired phagocytosis is reported following loss of TREM2. However, no data exist on TREM2+/R47H human microglia. Therefore, we created human pluripotent stem cell (hPSC) monocytes and transdifferentiated microglia-like cells (tMGs) to examine the effect of the TREM2+/R47H mutation and loss of TREM2 on phagocytosis. METHODS: We generated isogenic TREM2+/R47H, TREM2+/-, and TREM2-/- hPSCs using CRISPR/Cas9. Following differentiation to monocytes and tMGs, we studied the uptake of Escherichia coli fragments and analyzed amyloid plaque clearance from cryosections of APP/PS1+/- mouse brains. RESULTS: We demonstrated that tMGs resemble cultured human microglia. TREM2+/- and TREM2-/- hPSC monocytes and tMGs phagocytosed significantly less E. coli fragments and cleared less amyloid plaques than wild-type hPSC progeny, with no difference for TREM2+/R47H progeny. DISCUSSION: In vitro phagocytosis of hPSC monocytes and tMGs was not affected by the TREM2+/R47H mutation but was significantly impaired in TREM2+/- and TREM2-/- progeny.


Assuntos
Glicoproteínas de Membrana/deficiência , Microglia/metabolismo , Monócitos/metabolismo , Placa Amiloide/metabolismo , Receptores Imunológicos/deficiência , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo , Sistemas CRISPR-Cas , Células Cultivadas , Escherichia coli , Glicoproteínas de Membrana/genética , Camundongos Transgênicos , Fagocitose , Células-Tronco Pluripotentes , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores Imunológicos/genética
13.
EMBO J ; 33(15): 1667-80, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25001178

RESUMO

Sporadic Alzheimer's disease (AD) is the most prevalent form of dementia, but no clear disease-initiating mechanism is known. Aß deposits and neuronal tangles composed of hyperphosphorylated tau are characteristic for AD. Here, we analyze the contribution of microRNA-125b (miR-125b), which is elevated in AD. In primary neurons, overexpression of miR-125b causes tau hyperphosphorylation and an upregulation of p35, cdk5, and p44/42-MAPK signaling. In parallel, the phosphatases DUSP6 and PPP1CA and the anti-apoptotic factor Bcl-W are downregulated as direct targets of miR-125b. Knockdown of these phosphatases induces tau hyperphosphorylation, and overexpression of PPP1CA and Bcl-W prevents miR-125b-induced tau phosphorylation, suggesting that they mediate the effects of miR-125b on tau. Conversely, suppression of miR-125b in neurons by tough decoys reduces tau phosphorylation and kinase expression/activity. Injecting miR-125b into the hippocampus of mice impairs associative learning and is accompanied by downregulation of Bcl-W, DUSP6, and PPP1CA, resulting in increased tau phosphorylation in vivo. Importantly, DUSP6 and PPP1CA are also reduced in AD brains. These data implicate miR-125b in the pathogenesis of AD by promoting pathological tau phosphorylation.


Assuntos
Doença de Alzheimer/metabolismo , MicroRNAs/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Transtornos Cognitivos/genética , Regulação para Baixo , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo , Técnicas de Inativação de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/farmacologia , Neurônios/metabolismo , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
14.
EMBO J ; 33(5): 450-67, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24357581

RESUMO

TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule-associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over-expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant-negative Rab7-interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants.


Assuntos
Dendritos/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Mapeamento de Interação de Proteínas , Ratos
15.
EMBO J ; 32(14): 2015-28, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23792428

RESUMO

The protease ß-secretase 1 (Bace1) was identified through its critical role in production of amyloid-ß peptides (Aß), the major component of amyloid plaques in Alzheimer's disease. Bace1 is considered a promising target for the treatment of this pathology, but processes additional substrates, among them Neuregulin-1 (Nrg1). Our biochemical analysis indicates that Bace1 processes the Ig-containing ß1 Nrg1 (IgNrg1ß1) isoform. We find that a graded reduction in IgNrg1 signal strength in vivo results in increasingly severe deficits in formation and maturation of muscle spindles, a proprioceptive organ critical for muscle coordination. Further, we show that Bace1 is required for formation and maturation of the muscle spindle. Finally, pharmacological inhibition and conditional mutagenesis in adult animals demonstrate that Bace1 and Nrg1 are essential to sustain muscle spindles and to maintain motor coordination. Our results assign to Bace1 a role in the control of coordinated movement through its regulation of muscle spindle physiology, and implicate IgNrg1-dependent processing as a molecular mechanism.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Ácido Aspártico Endopeptidases/fisiologia , Fusos Musculares/crescimento & desenvolvimento , Fusos Musculares/fisiologia , Neuregulina-1/fisiologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Fusos Musculares/efeitos dos fármacos , Neuregulina-1/deficiência , Neuregulina-1/genética , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Inibidores de Proteases/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Desempenho Psicomotor/fisiologia , Pirimidinas/farmacologia , Transdução de Sinais , Tiazinas/farmacologia
16.
EMBO J ; 31(22): 4258-75, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22968170

RESUMO

Fused in sarcoma (FUS) is a nuclear protein that carries a proline-tyrosine nuclear localization signal (PY-NLS) and is imported into the nucleus via Transportin (TRN). Defects in nuclear import of FUS have been implicated in neurodegeneration, since mutations in the PY-NLS of FUS cause amyotrophic lateral sclerosis (ALS). Moreover, FUS is deposited in the cytosol in a subset of frontotemporal lobar degeneration (FTLD) patients. Here, we show that arginine methylation modulates nuclear import of FUS via a novel TRN-binding epitope. Chemical or genetic inhibition of arginine methylation restores TRN-mediated nuclear import of ALS-associated FUS mutants. The unmethylated arginine-glycine-glycine domain preceding the PY-NLS interacts with TRN and arginine methylation in this domain reduces TRN binding. Inclusions in ALS-FUS patients contain methylated FUS, while inclusions in FTLD-FUS patients are not methylated. Together with recent findings that FUS co-aggregates with two related proteins of the FET family and TRN in FTLD-FUS but not in ALS-FUS, our study provides evidence that these two diseases may be initiated by distinct pathomechanisms and implicates alterations in arginine methylation in pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Arginina/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Degeneração Lobar Frontotemporal/metabolismo , Inativação Gênica , Células HeLa , Humanos , Carioferinas/genética , Metilação , Dados de Sequência Molecular , Prolina/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Tirosina/metabolismo
17.
J Neurosci ; 33(18): 7856-69, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637177

RESUMO

Proteolytic shedding of cell surface proteins generates paracrine signals involved in numerous signaling pathways. Neuregulin 1 (NRG1) type III is involved in myelination of the peripheral nervous system, for which it requires proteolytic activation by proteases of the ADAM family and BACE1. These proteases are major therapeutic targets for the prevention of Alzheimer's disease because they are also involved in the proteolytic generation of the neurotoxic amyloid ß-peptide. Identification and functional investigation of their physiological substrates is therefore of greatest importance in preventing unwanted side effects. Here we investigated proteolytic processing of NRG1 type III and demonstrate that the ectodomain can be cleaved by three different sheddases, namely ADAM10, ADAM17, and BACE1. Surprisingly, we not only found cleavage by ADAM10, ADAM17, and BACE1 C-terminal to the epidermal growth factor (EGF)-like domain, which is believed to play a pivotal role in signaling, but also additional cleavage sites for ADAM17 and BACE1 N-terminal to that domain. Proteolytic processing at N- and C-terminal sites of the EGF-like domain results in the secretion of this domain from NRG1 type III. The soluble EGF-like domain is functionally active and stimulates ErbB3 signaling in tissue culture assays. Moreover, the soluble EGF-like domain is capable of rescuing hypomyelination in a zebrafish mutant lacking BACE1. Our data suggest that NRG1 type III-dependent myelination is not only controlled by membrane-retained NRG1 type III, but also in a paracrine manner via proteolytic liberation of the EGF-like domain.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Neurregulinas/metabolismo , Comunicação Parácrina/fisiologia , Proteína ADAM17 , Animais , Membrana Celular/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Embrião de Mamíferos , Fator de Crescimento Epidérmico/análogos & derivados , Fator de Crescimento Epidérmico/química , Humanos , Imunoprecipitação , Neurregulinas/genética , Neurônios , Fosforilação , Proteólise , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann , Transfecção , Peixe-Zebra
18.
Acta Neuropathol ; 127(6): 845-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24619111

RESUMO

Heterozygous loss-of-function mutations in the progranulin (GRN) gene and the resulting reduction of GRN levels is a common genetic cause for frontotemporal lobar degeneration (FTLD) with accumulation of TAR DNA-binding protein (TDP)-43. Recently, it has been shown that a complete GRN deficiency due to a homozygous GRN loss-of-function mutation causes neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. These findings suggest that lysosomal dysfunction may also contribute to some extent to FTLD. Indeed, Grn(-/-) mice recapitulate not only pathobiochemical features of GRN-associated FTLD-TDP (FTLD-TDP/GRN), but also those which are characteristic for NCL and lysosomal impairment. In Grn(-/-) mice the lysosomal proteins cathepsin D (CTSD), LAMP (lysosomal-associated membrane protein) 1 and the NCL storage components saposin D and subunit c of mitochondrial ATP synthase (SCMAS) were all found to be elevated. Moreover, these mice display increased levels of transmembrane protein (TMEM) 106B, a lysosomal protein known as a risk factor for FTLD-TDP pathology. In line with a potential pathological overlap of FTLD and NCL, Ctsd(-/-) mice, a model for NCL, show elevated levels of the FTLD-associated proteins GRN and TMEM106B. In addition, pathologically phosphorylated TDP-43 occurs in Ctsd(-/-) mice to a similar extent as in Grn(-/-) mice. Consistent with these findings, some NCL patients accumulate pathologically phosphorylated TDP-43 within their brains. Based on these observations, we searched for pathological marker proteins, which are characteristic for NCL or lysosomal impairment in brains of FTLD-TDP/GRN patients. Strikingly, saposin D, SCMAS as well as the lysosomal proteins CTSD and LAMP1/2 are all elevated in patients with FTLD-TDP/GRN. Thus, our findings suggest that lysosomal storage disorders and GRN-associated FTLD may share common features.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Animais , Catepsina D/genética , Catepsina D/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Granulinas , Humanos , Immunoblotting , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Knockout , Fosforilação , Progranulinas
19.
EMBO Rep ; 13(8): 759-64, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22710833

RESUMO

A subset of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) patients present pathological redistribution and aggregation of the nuclear protein fused in sarcoma (FUS) in the cytoplasm. Although FUS associates with the spliceosomal complex, no endogenous neuronal splicing targets have been identified. Here we identify Tau mRNA as a physiological splicing target of FUS. In mouse brain, FUS directly binds to Tau pre-mRNA, and knockdown of FUS in hippocampal neurons leads to preferential inclusion of Tau exons 3 and 10. FUS knockdown causes significant growth cone enlargement and disorganization reminiscent of Tau loss of function. These findings suggest that disturbed cytoskeletal function and enhanced expression of the neurodegeneration-associated Tau exon 10 might contribute to FTLD/ALS with FUS inclusions.


Assuntos
Degeneração Neural/genética , Degeneração Neural/patologia , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas tau/genética , Animais , Axônios/metabolismo , Citoesqueleto/metabolismo , Éxons/genética , Técnicas de Silenciamento de Genes , Genes Reporter , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Camundongos , Fenótipo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas tau/metabolismo
20.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220388, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368932

RESUMO

Niemann-Pick type C (NPC) disease is a rare progressive lysosomal lipid storage disorder that manifests with a heterogeneous spectrum of clinical syndromes, including visceral, neurological and psychiatric symptoms. This monogenetic autosomal recessive disease is largely caused by mutations in the NPC1 gene, which controls intracellular lipid homeostasis. Vesicle-mediated endo-lysosomal lipid trafficking and non-vesicular lipid exchange via inter-organelle membrane contact sites are both regulated by the NPC1 protein. Loss of NPC1 function therefore triggers intracellular accumulation of diverse lipid species, including cholesterol, glycosphingolipids, sphingomyelin and sphingosine. The NPC1-mediated dysfunction of lipid transport has severe consequences for all brain cells, leading to neurodegeneration. Besides the cell-autonomous contribution of neuronal NPC1, aberrant NPC1 signalling in other brain cells is critical for the pathology. We discuss here the importance of endo-lysosomal dysfunction and a tight crosstalk between neurons, oligodendrocytes, astrocytes and microglia in NPC pathology. We strongly believe that a cell-specific rescue may not be sufficient to counteract the severity of the NPC pathology, but targeting common mechanisms, such as endo-lysosomal and lipid trafficking dysfunction, may ameliorate NPC pathology. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Niemann-Pick Tipo C , Humanos , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios , Colesterol/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA