Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 7(6): 5131-41, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23651213

RESUMO

We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.


Assuntos
Cannabis/química , Capacitância Elétrica , Grafite/química , Nanoestruturas/química , Adsorção , Eletroquímica , Nitrogênio/química , Propriedades de Superfície , Fatores de Tempo
2.
J Hazard Mater ; 166(1): 372-6, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19111397

RESUMO

A new and cost-effective adsorbent N-TRAP, made from waste wood-shavings and anaerobically digestion biosolids and impregnated with H(2)SO(4), was applied for the ammonia removal from air stream and biogas with high efficiency and effectiveness. Bearing a 75-80 and 65 wt.% sulfuric acid, the N-TRAPs mediated with wood shavings and biosolids showed the maximum ammonia adsorption capacity of 260-280 and 230 mg g(-1), respectively. Gas temperatures (20 and 60 degrees C) and moisture content (100% relative humidity) had no significantly negative effect on ammonia capture performance when temperature in the fixed-bed column was kept equalled to or slightly above the feed gas temperature. The pressure drop increased significantly when NH(3) began to break through the N-TRAP stripper due to the formation of ammonium sulfate blocking the vacuum space of packed adsorbent. At last, an alternative N-TRAP filter bed design was proposed to resolve the problem of pressure drop evolution.


Assuntos
Amônia/isolamento & purificação , Eliminação de Resíduos/métodos , Adsorção , Ar/análise , Biomassa , Técnicas de Laboratório Clínico , Desenho de Equipamento , Gases/análise , Resíduos Industriais/prevenção & controle , Ácidos Sulfúricos , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA