RESUMO
Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.
Assuntos
Giro Denteado , Células-Tronco Neurais , Animais , Camundongos , Giro Denteado/metabolismo , Proteólise , Células-Tronco Neurais/metabolismo , Astrócitos/metabolismo , Lisossomos/metabolismoRESUMO
Impairment of episodic memory, a class of memory for spatiotemporal context of an event, is an early symptom of Alzheimer's disease. Both spatial and temporal information are encoded and represented in the hippocampal neurons, but how these representations are impaired under amyloid ß (Aß) pathology remains elusive. We performed chronic imaging of the hippocampus in awake male amyloid precursor protein (App) knock-in mice behaving in a virtual reality environment to simultaneously monitor spatiotemporal representations and the progression of Aß depositions. We found that temporal representation is preserved, whereas spatial representation is significantly impaired in the App knock-in mice. This is because of the overall reduction of active place cells, but not time cells, and compensatory hyperactivation of remaining place cells near Aß aggregates. These results indicate the differential impact of Aß aggregates on two major modalities of episodic memory, suggesting different mechanisms for forming and maintaining these two representations in the hippocampus.
Assuntos
Doença de Alzheimer/patologia , Região CA1 Hipocampal/patologia , Transtornos da Memória/patologia , Neurônios/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/toxicidade , Animais , Modelos Animais de Doenças , Masculino , Memória Episódica , CamundongosRESUMO
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive impairment with neuronal loss. The number of patients suffering from AD has increased, but none of the present therapies stops the progressive symptoms in patients with AD. It has been reported that the activation of microglial cells induces harmful chronic inflammation, leading to neuronal death. Furthermore, the impairment of adult neurogenesis in the hippocampus has been observed earlier than amyloid plaque formation. Inflammatory response may lead to impaired adult neurogenesis in patients with AD. This study examines the relationship between adult neurogenesis and neuroinflammation using APPswe/PS1M146V/tauP301L (3 × Tg) mice. We observed a decline in the proliferation of neural stem cells and the occurrence of severe inflammation in the hippocampus of 3 × Tg mouse brains at 12 months of age. Previously, our research had shown an anti-inflammatory effect of all-trans retinoic acid (ATRA) in the 3 × Tg mouse brain. We found that ATRA has effects on the recovery of proliferative cells along with suppression of activated microglia in the hippocampus. These results suggest that the inhibition of microglial activation by ATRA leads to recovery of adult neurogenesis in the hippocampus in an AD mouse model. © 2016 Wiley Periodicals, Inc.
Assuntos
Doença de Alzheimer/patologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Hipocampo/patologia , Microglia/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Tretinoína/farmacologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Proteínas tau/genéticaRESUMO
The amyloid ß peptide (Aß), starting with pyroglutamate (pE) at position 3 and ending at position 42 (Aß3pE-42), predominantly accumulates in the brains of Alzheimer's disease. Consistently, donanemab, a therapeutic antibody raised against Aß3pE-42, has been shown to be effective in recent clinical trials. Although the primary Aß produced physiologically is Aß1-40/42, an explanation for how and why this physiological Aß is converted to the pathological form remains elusive. Here, we present experimental evidence that accounts for the aging-associated Aß3pE-42 deposition: Aß3pE-42 was metabolically more stable than other Aßx-42 variants; deficiency of neprilysin, the major Aß-degrading enzyme, induced a relatively selective deposition of Aß3pE-42 in both APP transgenic and App knock-in mouse brains; Aß3pE-42 deposition always colocalized with Pittsburgh compound B-positive cored plaques in APP transgenic mouse brains; and under aberrant conditions, such as a significant reduction in neprilysin activity, aminopeptidases, dipeptidyl peptidases, and glutaminyl-peptide cyclotransferase-like were up-regulated in the progression of aging, and a proportion of Aß1-42 may be processed to Aß3pE-42. Our findings suggest that anti-Aß therapies are more effective if given before Aß3pE-42 deposition.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Epitopos , Camundongos Transgênicos , Neprilisina , Peptídeos beta-Amiloides/metabolismo , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Camundongos , Humanos , Encéfalo/metabolismo , Neprilisina/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Fragmentos de Peptídeos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Precursor de Proteína beta-Amiloide/metabolismo , Anticorpos Monoclonais HumanizadosRESUMO
Since 1995, more than 100 transgenic (Tg) mouse models of Alzheimer's disease (AD) have been generated in which mutant amyloid precursor protein (APP) or APP/presenilin 1 (PS1) cDNA is overexpressed ( 1st generation models ). Although many of these models successfully recapitulate major pathological hallmarks of the disease such as amyloid ß peptide (Aß) deposition and neuroinflammation, they have suffered from artificial phenotypes in the form of overproduced or mislocalized APP/PS1 and their functional fragments, as well as calpastatin deficiency-induced early lethality, calpain activation, neuronal cell death without tau pathology, endoplasmic reticulum stresses, and inflammasome involvement. Such artifacts bring two important uncertainties into play, these being (1) why the artifacts arise, and (2) how they affect the interpretation of experimental results. In addition, destruction of endogenous gene loci in some Tg lines by transgenes has been reported. To overcome these concerns, single App knock-in mouse models harboring the Swedish and Beyreuther/Iberian mutations with or without the Arctic mutation (AppNL-G-F and AppNL-F mice) were developed ( 2nd generation models ). While these models are interesting given that they exhibit Aß pathology, neuroinflammation, and cognitive impairment in an age-dependent manner, the model with the Artic mutation, which exhibits an extensive pathology as early as 6 months of age, is not suitable for investigating Aß metabolism and clearance because the Aß in this model is resistant to proteolytic degradation and is therefore prone to aggregation. Moreover, it cannot be used for preclinical immunotherapy studies owing to the discrete affinity it shows for anti-Aß antibodies. The weakness of the latter model (without the Arctic mutation) is that the pathology may require up to 18 months before it becomes sufficiently apparent for experimental investigation. Nevertheless, this model was successfully applied to modulating Aß pathology by genome editing, to revealing the differential roles of neprilysin and insulin-degrading enzyme in Aß metabolism, and to identifying somatostatin receptor subtypes involved in Aß degradation by neprilysin. In addition to discussing these issues, we also provide here a technical guide for the application of App knock-in mice to AD research. Subsequently, a new double knock-in line carrying the AppNL-F and Psen1 P117L/WT mutations was generated, the pathogenic effect of which was found to be synergistic. A characteristic of this 3rd generation model is that it exhibits more cored plaque pathology and neuroinflammation than the AppNL-G-F line, and thus is more suitable for preclinical studies of disease-modifying medications targeting Aß. Furthermore, a derivative AppG-F line devoid of Swedish mutations which can be utilized for preclinical studies of ß-secretase modifier(s) was recently created. In addition, we introduce a new model of cerebral amyloid angiopathy that may be useful for analyzing amyloid-related imaging abnormalities that can be caused by anti-Aß immunotherapy. Use of the App knock-in mice also led to identification of the α-endosulfine-K ATP channel pathway as components of the somatostatin-evoked physiological mechanisms that reduce Aß deposition via the activation of neprilysin. Such advances have provided new insights for the prevention and treatment of preclinical AD. Because tau pathology plays an essential role in AD pathogenesis, knock-in mice with human tau wherein the entire murine Mapt gene has been humanized were generated. Using these mice, the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) was discovered as a mediator linking tau pathology to neurodegeneration and showed that tau humanization promoted pathological tau propagation. Finally, we describe and discuss the current status of mutant human tau knock-in mice and a non-human primate model of AD that we have successfully created.