RESUMO
Chromosomes of metazoan organisms are partitioned in the interphase nucleus into discrete topologically associating domains (TADs). Borders between TADs are formed in regions containing active genes and clusters of architectural protein binding sites. The transcription of most genes is repressed after temperature stress in Drosophila. Here we show that temperature stress induces relocalization of architectural proteins from TAD borders to inside TADs, and this is accompanied by a dramatic rearrangement in the 3D organization of the nucleus. TAD border strength declines, allowing for an increase in long-distance inter-TAD interactions. Similar but quantitatively weaker effects are observed upon inhibition of transcription or depletion of individual architectural proteins. Heat shock-induced inter-TAD interactions result in increased contacts among enhancers and promoters of silenced genes, which recruit Pc and form Pc bodies in the nucleolus. These results suggest that the TAD organization of metazoan genomes is plastic and can be reconfigured quickly.
Assuntos
Cromatina/genética , Cromossomos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Grupo Polycomb/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Dados de Sequência Molecular , Proteínas do Grupo Polycomb/química , Proteínas do Grupo Polycomb/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico , TemperaturaRESUMO
Insulators are multiprotein-DNA complexes thought to affect gene expression by mediating inter- and intrachromosomal interactions. Drosophila insulators contain specific DNA-binding proteins plus common components, such as CP190, that facilitate these interactions. Here, we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA-binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to DNA to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli.
Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Cromossomos/química , DNA/química , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Ecdisona/farmacologia , Perfilação da Expressão Gênica , Genoma , Proteínas de Choque Térmico/metabolismo , Microscopia de Fluorescência/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Transcrição GênicaRESUMO
Transcription regulation is mediated by enhancers that bind sequence-specific transcription factors, which in turn interact with the promoters of the genes they control. Here, we show that the JIL-1 kinase is present at both enhancers and promoters of ecdysone-induced Drosophila genes, where it phosphorylates the Ser10 and Ser28 residues of histone H3. JIL-1 is also required for CREB binding protein (CBP)-mediated acetylation of Lys27, a well-characterized mark of active enhancers. The presence of these proteins at enhancers and promoters of ecdysone-induced genes results in the establishment of the H3K9acS10ph and H3K27acS28ph marks at both regulatory sequences. These modifications are necessary for the recruitment of 14-3-3, a scaffolding protein capable of facilitating interactions between two simultaneously bound proteins. Chromatin conformation capture assays indicate that interaction between the enhancer and the promoter is dependent on the presence of JIL-1, 14-3-3, and CBP. Genome-wide analyses extend these conclusions to most Drosophila genes, showing that the presence of JIL-1, H3K9acS10ph, and H3K27acS28ph is a general feature of enhancers and promoters in this organism.
Assuntos
Cromatina/genética , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Histonas/metabolismo , Regiões Promotoras Genéticas , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Acetilação , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Ecdisona/genética , Ecdisona/metabolismo , Regulação da Expressão Gênica , Genoma de Inseto , Histonas/genética , Lisina/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Transcrição GênicaRESUMO
Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors. RNAi depletion of dCTCF and combinatorial knockdown of gene expression for other Drosophila insulator proteins leads to a reduction in H3K27me3 levels within repressed domains, suggesting that insulators are important for the maintenance of appropriate repressive chromatin structure in Polycomb (Pc) domains. These results shed new insights into the roles of insulators in chromatin domain organization and support recent models suggesting that insulators underlie interactions important for Pc-mediated repression. We reveal an important relationship between dCTCF and other Drosophila insulator proteins and speculate that vertebrate CTCF may also align with other nuclear proteins to accomplish similar functions.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas do Olho/metabolismo , Genoma de Inseto , Histonas/metabolismo , Elementos Isolantes , Proteínas Repressoras/metabolismo , Animais , Fator de Ligação a CCCTC , Cromatina/química , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas do Olho/genética , Histonas/química , Histonas/genética , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno , Proteínas Repressoras/genéticaRESUMO
Brd4 is a double bromodomain protein that has been shown to interact with acetylated histones to regulate transcription by recruiting Positive Transcription Elongation Factor b to the promoter region. Brd4 is also involved in gene bookmarking during mitosis and is a therapeutic target for the treatment of acute myeloid leukemia. The Drosophila melanogaster Brd4 homologue is called Fs(1)h and, like its vertebrate counterpart, encodes different isoforms. We have used ChIP-seq to examine the genome-wide distribution of Fs(1)h isoforms. We are able to distinguish the Fs(1)h-L and Fs(1)h-S binding profiles and discriminate between the genomic locations of the two isoforms. Fs(1)h-S is present at enhancers and promoters and its amount parallels transcription levels. Correlations between the distribution of Fs(1)h-S and various forms of acetylated histones H3 and H4 suggest a preference for binding to H3K9acS10ph. Surprisingly, Fs(1)h-L is located at sites in the genome where multiple insulator proteins are also present. The results suggest that Fs(1)h-S may be responsible for the classical role assigned to this protein, whereas Fs(1)h-L may have a new and unexpected role in chromatin architecture by working in conjunction with insulator proteins to mediate intra- or inter-chromosome interactions.
Assuntos
Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Elementos Isolantes , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster/genética , Histonas/metabolismo , Isoformas de Proteínas/metabolismo , Transcrição GênicaRESUMO
Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver. In lineage-traced cells, we assessed the timing of SOX4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, SOX4 directly binds to and closes hepatocyte regulatory sequences via an overlapping motif with HNF4A, a hepatocyte master regulatory transcription factor. Subsequently, SOX4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.
Assuntos
Reprogramação Celular , Cromatina , Animais , Camundongos , Diferenciação Celular/genética , Reprogramação Celular/genética , Metaplasia , Fatores de Transcrição/metabolismoRESUMO
Post-translational modifications of histone proteins modulate the binding of transcription regulators to chromatin. Studies in Drosophila have shown that the phosphorylation of histone H3 at Ser10 (H3S10ph) by JIL-1 is required specifically during early transcription elongation. 14-3-3 proteins bind H3 only when phosphorylated, providing mechanistic insights into the role of H3S10ph in transcription. Findings presented here show that 14-3-3 functions downstream of H3S10ph during transcription elongation. 14-3-3 proteins localize to active genes in a JIL-1-dependent manner. In the absence of 14-3-3, levels of actively elongating RNA polymerase II are severely diminished. 14-3-3 proteins interact with Elongator protein 3 (Elp3), an acetyltransferase that functions during transcription elongation. JIL-1 and 14-3-3 are required for Elp3 binding to chromatin, and in the absence of either protein, levels of H3K9 acetylation are significantly reduced. These results suggest that 14-3-3 proteins mediate cross-talk between histone phosphorylation and acetylation at a critical step in transcription elongation.
Assuntos
Proteínas 14-3-3/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Transcrição Gênica , Acetilação , Animais , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
To determine how different pioneer transcription factors form a targeted, accessible nucleosome within compacted chromatin and collaborate with an ATP-dependent chromatin remodeler, we generated nucleosome arrays in vitro with a central nucleosome containing binding sites for the hematopoietic E-Twenty Six (ETS) factor PU.1 and Basic Leucine Zipper (bZIP) factors C/EBPα and C/EBPß. Our long-read sequencing reveals that each factor can expose a targeted nucleosome on linker histone-compacted arrays, but with different nuclease sensitivity patterns. The DNA binding domain of PU.1 binds mononucleosomes, but requires an additional intrinsically disordered domain to bind and open compacted chromatin. The canonical mammalian SWI/SNF (cBAF) remodeler was unable to act upon two forms of locally open chromatin unless cBAF was enabled by a separate transactivation domain of PU.1. cBAF potentiates the PU.1 DNA binding domain to weakly open chromatin in the absence of the PU.1 disordered domain. Our findings reveal a hierarchy by which chromatin is opened and show that pioneer factors can provide specificity for action by nucleosome remodelers.
Assuntos
Cromatina , Nucleossomos , Animais , Fatores de Transcrição/metabolismo , DNA , Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Mamíferos/genéticaRESUMO
Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that Sox4 is sufficient to initiate hepatobiliary metaplasia in the adult liver. In lineage-traced cells, we assessed the timing of Sox4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, Sox4 directly binds to and closes hepatocyte regulatory sequences via a motif it overlaps with Hnf4a, a hepatocyte master regulator. Subsequently, Sox4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.
RESUMO
The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular cross-links based on inclusion complexation of acetylated cyclodextrin. The mechanical properties, such as Young's modulus and toughness, of these pMEA-based elastomers change with the amount of cross-links, maintaining tissue-like behavior (J-shaped stress-strain curve). Regardless of the cross-links, the pMEA-based elastomers exhibit low platelet adhesion properties (approximately 3% platelet adherence) compared with those of poly(ethylene terephthalate), which is one of the commercialized materials for artificial blood vessels. Contact angle measurements imply a shift of supramolecular cross-links in response to the surrounding environment. When immersed in water, hydrophobic supramolecular cross-links are buried within the interior of the materials, thereby exposing pMEA chains to the aqueous environment; this is why supramolecular cross-links do not affect the platelet adhesion properties. In addition, the elastomers exhibit stable adhesion to human umbilical vein endothelial cells. This report shows the potential of combining supramolecular cross-links and pMEA.
RESUMO
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed too late for effective therapy. The classic strategy for early detection biomarker advancement consists of initial retrospective phases of discovery and validation with tissue samples taken from individuals diagnosed with disease, compared with controls. Using this approach, we previously reported the discovery of a blood biomarker panel consisting of thrombospondin-2 (THBS2) and CA19-9 that together could discriminate resectable stage I and IIa PDAC as well as stages III and IV PDAC, with c-statistic values in the range of 0.96 to 0.97 in two phase II studies. We now report that in two studies of blood samples prospectively collected from 1 to 15 years prior to a PDAC diagnosis (Mayo Clinic and PLCO cohorts), THBS2 and/or CA19-9 failed to discriminate cases from healthy controls at the AUC = 0.8 needed. We conclude that PDAC progression may be heterogeneous and for some individuals can be more rapid than generally appreciated. It is important that PDAC early-detection studies incorporate high-risk, prospective prediagnostic cohorts into discovery and validation studies.Prevention Relevance: A blood biomarker panel of THBS2 and CA19-9 detects early stages of pancreatic ductal adenocarcinoma at diagnosis, but not when tested across a population up to 1 year earlier. Our findings suggest serial sampling over time, using prospectively collected samples for biomarker discovery, and more frequent screening of high-risk individuals.
Assuntos
Antígenos Glicosídicos Associados a Tumores/sangue , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Trombospondinas/sangue , Idoso , Carcinoma Ductal Pancreático/sangue , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Pancreáticas/sangue , Valor Preditivo dos Testes , Estudos ProspectivosRESUMO
Patients newly diagnosed with metastatic pancreatic ductal adenocarcinoma generally have poor survival, with heterogeneous rates of progression. Biomarkers that could predict progression and/or survival would help inform patients and providers as they make care decisions. In a previous retrospective study, we discovered that circulating thrombospondin-2 (THBS2) could, in combination with CA19-9, better distinguish patients with PDAC versus healthy controls. Here we evaluated whether THBS2 levels, previously not known to be prognostic, were associated with outcome in 68 patients at time of diagnosis of metastatic PDAC. Specifically, we interrogated the association of THBS2 level, alone or in combination with CA19-9, with progression by 90 days and/or survival to 180 days. The results indicate that elevated THBS2 levels alone, at the time of a metastatic PDAC diagnosis, can identify patients with a shorter time to death and thus help patients and providers when planning treatment.
RESUMO
Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short α-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming.
Assuntos
Redes Reguladoras de Genes/genética , Histonas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatina/genética , DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nucleossomos/genética , Transcrição Gênica/genéticaRESUMO
At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (lambda(max)'s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76-86%, 14-24%, and 10% of the spectral difference between them could be explained by amino acid differences in transmembrane (TM) helices I-IV, V-VII, and amino acid interactions between the two segments, respectively. Evolutionary and mutagenesis analyses revealed that the lambda(max)'s of the gecko and chameleon pigments diverged from each other not only by S49A (serine to alanine replacement at residue 49), S49F (serine to phenylalanine), L52M (leucine to methionine), D83N (aspartic acid to asparagine), M86T (methionine to threonine), and T97A (threonine to alanine) but also by other amino acid replacements that cause minor lambda(max)-shifts individually.
Assuntos
Lagartos/metabolismo , Pigmentos Biológicos/química , Pigmentos Biológicos/classificação , Opsinas de Bastonetes/química , Opsinas de Bastonetes/classificação , Substituição de Aminoácidos , Animais , Evolução Molecular , Lagartos/genética , Dados de Sequência Molecular , Filogenia , Pigmentação , Pigmentos Biológicos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Opsinas de Bastonetes/genética , Análise EspectralRESUMO
The molecular bases of spectral tuning in the UV-, violet-, and blue-sensitive pigments are not well understood. Using the in vitro assay, here we show that the SWS1, SWS2-A, and SWS2-B pigments of bluefin killifish (Lucania goodei) have the wavelengths of maximal absorption (lambda(max)'s) of 354, 448, and 397 nm, respectively. The spectral difference between the SWS2-A and SWS2-B pigments is largest among those of all currently known pairs of SWS2 pigments within a species. The SWS1 pigment contains no amino acid replacement at the currently known 25 critical sites and seems to have inherited its UV-sensitivity directly from the vertebrate ancestor. Mutagenesis analyses show that the amino acid differences at sites 44, 46, 94, 97, 109, 116, 118, 265, and 292 of the SWS2-A and SWS2-B pigments explain 80% of their spectral difference. Moreover, the larger the individual effects of amino acid changes on the lambda(max)-shift are, the larger the synergistic effects tend to be generated, revealing a novel mechanism of spectral tuning of visual pigments.
Assuntos
Proteínas de Peixes/química , Peixes Listrados/metabolismo , Pigmentos da Retina/química , Substituição de Aminoácidos , Animais , Filogenia , EspectrofotometriaRESUMO
Being the largest land mammals, elephants have very few natural enemies and are active during both day and night. Compared with those of diurnal and nocturnal animals, the eyes of elephants and other arrhythmic species, such as many ungulates and large carnivores, must function in both the bright light of day and dim light of night. Despite their fundamental importance, the roles of photosensitive molecules, visual pigments, in arrhythmic vision are not well understood. Here we report that elephants (Loxodonta africana and Elephas maximus) use RH1, SWS1, and LWS pigments, which are maximally sensitive to 496, 419, and 552 nm, respectively. These light sensitivities are virtually identical to those of certain "color-blind" people who lack MWS pigments, which are maximally sensitive to 530 nm. During the day, therefore, elephants seem to have the dichromatic color vision of deuteranopes. During the night, however, they are likely to use RH1 and SWS1 pigments and detect light at 420-490 nm.
Assuntos
Defeitos da Visão Cromática/genética , Elefantes/genética , Pigmentos da Retina/genética , Animais , Carnívoros/metabolismo , Gatos , Bovinos , Cães , Elefantes/metabolismo , Feminino , Humanos , Dados de Sequência Molecular , Pigmentos da Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Opsinas de Bastonetes/genética , EspectrofotometriaRESUMO
We previously discovered Y-chromosomal red-green opsin genes in two types of owl monkeys with different chromosomal characteristics. In one type, the Y-linked opsin gene is a single-copy intact gene and in the other, the genes exist as multiple pseudogenes on a Y/autosome fusion chromosome. In the present study, we first distinguished the two types of monkeys as distinct allopatric species on the basis of karyotypic characteristics: Aotus lemurinus griseimembra (Karyotype III, diploid chromosome number [2n]=53) and Aotus azarae boliviensis (Karyotype VI; male 2n=49; female 2n=50), belonging to the northern and southern species groups, respectively, separated by the Amazon River system. Our sequence analysis revealed a common L1-Alu-Alu insertion between the two species in the 3'-flanking region of the X-linked opsin genes. The insertion was absent in the Y-linked opsin genes and in the human red and green opsin genes, indicating that it occurred in the X copy before the split into northern and southern species and after the X to Y duplication, i.e. duplication preceded speciation. We also show that in the northern species, the Y-linked opsin gene has evolved concomitantly with the X-linked copy whereas in the southern species, the Y-autosome fusion possibly led to decoupling evolutionary processes between X- and Y-linked copies and subsequent degeneration and duplications of the Y-linked opsin gene.
Assuntos
Aotidae/genética , Evolução Molecular , Opsinas de Bastonetes/genética , Cromossomo X/genética , Cromossomo Y/genética , Elementos Alu/genética , Animais , Aotidae/classificação , Aberrações Cromossômicas , Bandeamento Cromossômico , Éxons , Feminino , Genes/genética , Ligação Genética , Íntrons , Cariotipagem , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Modelos Genéticos , Família Multigênica/genética , Mutagênese Insercional , Filogenia , Especificidade da Espécie , Translocação GenéticaRESUMO
The transforming growth factor ß (TGF-ß) and bone morphogenetic protein (BMP) pathways transduce extracellular signals into tissue-specific transcriptional responses. During this process, signaling effector Smad proteins translocate into the nucleus to direct changes in transcription, but how and where they localize to DNA remain important questions. We have mapped Drosophila TGF-ß signaling factors Mad, dSmad2, Medea, and Schnurri genome-wide in Kc cells and find that numerous sites for these factors overlap with the architectural protein CTCF. Depletion of CTCF by RNAi results in the disappearance of a subset of Smad sites, suggesting Smad proteins localize to CTCF binding sites in a CTCF-dependent manner. Sensitive Smad binding sites are enriched at low occupancy CTCF peaks within topological domains, rather than at the physical domain boundaries where CTCF may function as an insulator. In response to Decapentaplegic, CTCF binding is not significantly altered, whereas Mad, Medea, and Schnurri are redirected from CTCF to non-CTCF binding sites. These results suggest that CTCF participates in the recruitment of Smad proteins to a subset of genomic sites and in the redistribution of these proteins in response to BMP signaling.
Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Proteínas Repressoras/fisiologia , Proteínas Smad/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular , Sequência Consenso , Drosophila melanogaster/genética , Epigênese Genética , Transporte Proteico , Transdução de Sinais , Transcrição Gênica , Fator de Crescimento Transformador beta/fisiologiaRESUMO
The X-chromosomal locality of the red-green-sensitive opsin genes has been the norm for all mammals and is essential for color vision of higher primates. Owl monkeys (Aotus), a genus of New World monkeys, are the only nocturnal higher primates and are severely color-blind. We demonstrate that the owl monkeys possess extra red-green opsin genes on the Y-chromosome. The Y-linked opsin genes were found to be extremely varied, in one male appearing to be a functional gene and in other males to be multicopy pseudogenes. These Y-linked opsin genes should offer a rare opportunity to study the evolutionary fate of genes translocated to the Y chromosome.