Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Acc Chem Res ; 57(6): 884-894, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38428923

RESUMO

ConspectusThe crystal structure of organic semiconductors has been regarded as one of the crucial factors for realizing high-performance electronic devices, such as organic field-effect transistors. However, although the control of crystal structures of organic semiconductors has been examined in the last two decades of intensive efforts of the development of organic semiconductors, active measures to control crystal structures enabling high carrier mobility are still limited. In 2016, our research group noticed that regioselective methylthiolation could provide a selective crystal structure change from an ordinary herringbone structure to a pitched π-stacking structure, similar to the crystal structure of rubrene, in the benzo[1,2-b:4,5-b']dithiophene (BDT) system. Following this serendipitous finding, our group systematically investigated the relationship between the molecular and crystal structures of a range of methylthiolated aromatic and heteroaromatic compounds.This Account provides a comprehensive overview of our research efforts and advancements in the development of methylthiolated small-molecule-based organic semiconductors (molecular semiconductors). We first describe the outline of the past development of molecular semiconductors, focusing on the types of crystal structures of high-performance molecular semiconductors. Then, we describe our findings on the drastic crystal structure change in the BDT system upon methylthiolation, detailing the causes of the change in terms of the intermolecular contacts and intermolecular interaction energies. This is followed by the confirmation of the generality of the crystal-structure change by methylthiolation of a series of acene and heteroacenes, where the herringbone structure in the parent system is unexceptionally transformed into the pitched π-stacking structure, a promising crystal structure for high-mobility molecular semiconductors well exemplified by the prototypical molecular semiconductor, rubrene. In fact, the methylthiolated anthradithiophene afforded comparable high mobility to rubrene in single-crystal field-effect transistors. Then, we demonstrate that the sandwich herringbone structures of peri-condensed polycyclic aromatic hydrocarbons, including pyrene, perylene, and peropyrene, change into brickwork crystal structures upon methylthiolation and that, among these compounds, very promising molecular semiconductors, methylthiolated pyrene and peropyrene, showing ultrahigh mobility of 30 cm2 V s-1, are realized.Through the studies, by gaining insights into the underlying mechanisms driving the crystal structure changes, we lay a strong foundation for tackling challenges related to controlling the crystal structures and developing high-performance molecular semiconductors. This will be a distinct approach from the past activities in the development of molecular semiconductors that mainly focused on molecules themselves, including their synthesis, properties, and characterization. We thus anticipate that our findings and the present Account will open the door to a new era of the development of molecular semiconductors.

2.
Opt Express ; 29(7): 10048-10058, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820140

RESUMO

We report terahertz electromagnetic wave emission by optical rectification from hydrogen-bonded single molecular crystal 4-nitro-2,5-bis(phenylethynyl)aniline designed to be polar via the hydrogen bonding between nitroaniline cores. The terahertz emission efficiency is comparable to the representative inorganic terahertz emitter ZnTe. We show terahertz emission characteristics, optical spectrum, and theoretical molecular orbital calculations. Another three kinds of nitroaniline-based organic molecules are revealed to form polar crystal structure, and they have large hyperpolarizabilities and have potential for terahertz photonics.

3.
Chemistry ; 27(63): 15660-15670, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34529287

RESUMO

Organic semiconductors with very small optical energy gaps have attracted a lot of attention for near-infrared-active optoelectronic applications. Herein, we present a series of donor-acceptor-donor (D-A-D) organic semiconductors consisting of a highly electron-deficient naphtho[1,2-b:5,6-b']dithiophene-2,7-dione quinoidal acceptor and oligothiophene donors that show very small optical energy gaps of down to 0.72 eV in the solid state. Investigation of the physicochemical properties of the D-A-D molecules as well as theoretical calculations of their electronic structures revealed an efficient intramolecular interaction between the quinoidal acceptor and the aromatic oligothiophene donors in the D-A-D molecules; this significantly enhances the backbone resonance and thus reduces the bond length alternation along the π-conjugated backbones. Despite the very small optical energy gaps, the D-A-D molecules have low-lying frontier orbital energy levels that give rise to air-stable ambipolar carrier transport properties with hole and electron mobilities of up to 0.026 and 0.043 cm2 V-1 s-1 , respectively, in field-effect transistors.

4.
Angew Chem Int Ed Engl ; 60(6): 3261-3267, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33098203

RESUMO

Polar materials attract wide research interest due to their unique properties, such as ferroelectricity and the bulk photovoltaic effect (BPVE), which are not accessible with nonpolar materials. However, in general, rationally designing polar materials is difficult because nonpolar materials are more favorable in terms of dipole-dipole interactions. Here, we report a rational strategy to form polar assemblies with bowl-shaped π-conjugated molecules and a molecular design principle for this strategy. We synthesized and thoroughly characterized 12 single crystals with the help of various theoretical calculations. Furthermore, we demonstrated that it can be possible to predict whether polar assemblies become more favorable or not by estimating their lattice energies. We believe that this study contributes to the development of organic polar materials and their related studies.

5.
Phys Rev Lett ; 124(2): 027204, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004034

RESUMO

There is a growing interest in utilizing the distinctive material properties of organic semiconductors for spintronic applications. Here, we explore the injection of pure spin current from Permalloy into a small molecule system based on dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) at ferromagnetic resonance. The unique tunability of organic materials by molecular design allows us to study the impact of interfacial properties on the spin injection efficiency systematically. We show that both the spin injection efficiency at the interface and the spin diffusion length can be tuned sensitively by the interfacial molecular structure and side chain substitution of the molecule.

6.
J Org Chem ; 85(1): 195-206, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31762281

RESUMO

For developing dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) derivatives as solution processable organic semiconductors, we synthesized 2-brominated DNTT (Br-DNTT) as a common precursor to 2-substituted DNTT derivatives. The synthesis of Br-DNTT features chemoselective metalation and cross-coupling reactions that enable us to keep the 2-bromo group intact from the starting material, 2-bromo-6-methoxynaphthalene, to Br-DNTT. We demonstrated one-step functionalization of Br-DNTT by various palladium- and copper-catalyzed cross-coupling reactions to introduce a variety of substituents, including ethynyl, aryl, heteroaryl, alkyl, alkoxy, and alkylthio groups, in yields of 73 to 98%. The resulting 12 examples of 2-substituted DNTT derivatives, which have bulky or flexible solubilizing groups, have improved solubilities of up to 200 times the solubility of unsubstituted DNTT. Some of the soluble 2-substituted DNTT derivatives were applied to the solution-processed fabrication of organic field-effect transistor (OFET) devices. Most of the OFET devices exhibited average hole mobilities in the order of 10-1 to 10-2 cm2 V-1 s-1. Among the DNTT derivatives, the one substituted with 4-(2-(2-methoxyethoxy)ethoxy)butyl group has the highest solubility of 8.45 g L-1 and also exhibited the highest average hole mobility of 0.28 cm2 V-1 s-1 in the OFET devices.

7.
Chemistry ; 23(19): 4579-4589, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28000319

RESUMO

We have synthesized two isomeric pairs of benzo- and naphthodithiophenediones with two flanking thiophenes and characterized them by single-crystal X-ray analysis, cyclic voltammetry, steady-state optical electronic absorption and emission spectroscopies, transient absorption spectroscopy, and vibrational spectroscopies with in situ spectroelectrochemistry techniques, and then compared them with the thieno[3,2-b]thiophene-2,5-dione counterpart that we previously reported. The results show that the central acenedithiophenedione cores have quinoidal conjugation with closed-shell character. The π-extension of the quinoidal core raises (lowers) the HOMO (LUMO) energy levels of the triads, resulting in the drastic reduction of their energy gaps from approximately 2.0 eV to 1.1 eV. Owing to the electron-withdrawing nature of the carbonyl terminal group at the quinoidal core, the triads have low-lying LUMO energy levels ranging from -3.9 eV to -4.3 eV, and can be regarded as strong electron-acceptor building units. Interestingly, the pairs of structural isomers have similar electronic structures in both the neutral and charged states despite the different shapes (linear and angular) and/or symmetry (C2h and C2v ) of the acenedithiophenedione cores.

8.
J Org Chem ; 82(4): 2123-2128, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28121143

RESUMO

The dual-analyte responsive behavior of tetraTTF-calix[4]pyrrole receptor 1 has been shown to complex electron-deficient planar guests in a 2:1 fashion by adopting a so-called 1,3-alternate conformation. However, stronger 1:1 complexes have been demonstrated with tetraalkylammonium halide salts that defer receptor 1 to its cone conformation. Herein, we report the complexation of an electron-deficient planar guest, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA, 2) that champions the complexation with 1, resulting in a high association constant Ka = 3 × 1010 M-2. The tetrathiafulvalene (TTF) subunits in the tetraTTF-calix[4]pyrrole receptor 1 present a near perfect shape and electronic complementarity to the NTCDA guest, which was confirmed by X-ray crystal structure analysis, DFT calculations, and electron density surface mapping. Moreover, the complexation of these species results in the formation of a charge transfer complex (22⊂1) as visualized by a readily apparent color change from yellow to brown.

9.
J Am Chem Soc ; 138(24): 7725-32, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27224874

RESUMO

The introduction of quinoidal character to π-conjugated polymers is one of the effective approaches to reducing the bandgap. Here we synthesized new π-conjugated polymers (PBTD4T and PBDTD4T) incorporating thienoquinoids 2,2'-bithiophene-5,5'-dione (BTD) and benzo[1,2-b:4,5-b']dithiophene-2,6-dione (BDTD) as strong electron-deficient (acceptor) units. PBTD4T showed a deep LUMO energy level of -3.77 eV and a small bandgap of 1.28 eV, which are similar to those of the analog using thieno[3,2-b]thiophene-2,5-dione (TTD) (PTTD4T). PBDTD4T had a much deeper LUMO energy level of -4.04 eV and a significantly smaller bandgap of 0.88 eV compared to those of the other two polymers. Interestingly, PBDTD4T showed high transparency in the visible region. The very small bandgap of PBDTD4T can be rationalized by the enhanced contribution of the resonance backbone structure in which the p-benzoquinodimethane skeleton in the BDTD unit plays a crucial role. PBTD4T and PBDTD4T exhibited ambipolar charge transport with more balanced mobilities between the hole and the electron than PTTD4T. We believe that the very small bandgap, i.e., the high near-infrared activity, as well as the well-balanced ambipolar property of the π-conjugated polymers based on these units would be of particular interest in the fabrication of next-generation organic devices.

10.
J Am Chem Soc ; 138(32): 10265-75, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27448181

RESUMO

The development of semiconducting polymers is imperative to improve the performance of polymer-based solar cells (PSCs). In this study, new semiconducting polymers based on naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole (NTz), PNTz4TF2 and PNTz4TF4, having 3,3'-difluoro-2,2'-bithiophene and 3,3',4,4'-tetrafluoro-2,2'-bithiophene, respectively, are designed and synthesized. These polymers possess a deeper HOMO energy level than their counterpart, PNTz4T, which results in higher open-circuit voltages in solar cells. This concequently reduces the photon energy loss that is one of the most important issues surrounding PSCs. The PNTz4TF4 cell exhibits up to 6.5% power conversion efficiency (PCE), whereas the PNTz4TF2 cell demonstrates outstanding device performance with as high as 10.5% PCE, which is quite high for PSCs. We further discuss the performances of the PSCs based on these polymers by correlating the charge generation and recombination dynamics with the polymer structure and ordering structure. We believe that the results provide new insights into the design of semiconducting polymers and that there is still much room for improvement of PSC efficiency.

11.
J Am Chem Soc ; 138(11): 3920-5, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26942407

RESUMO

On the basis of an excellent transistor material, [1]benzothieno[3,2-b][1]benzothiophene (BTBT), a series of highly conductive organic metals with the composition of (BTBT)2XF6 (X = P, As, Sb, and Ta) are prepared and the structural and physical properties are investigated. The room-temperature conductivity amounts to 4100 S cm(-1) in the AsF6 salt, corresponding to the drift mobility of 16 cm(2) V(-1) s(-1). Owing to the high conductivity, this salt shows a thermoelectric power factor of 55-88 µW K(-2) m(-1), which is a large value when this compound is regarded as an organic thermoelectric material. The thermoelectric power and the reflectance spectrum indicate a large bandwidth of 1.4 eV. These salts exhibit an abrupt resistivity jump under 200 K, which turns to an insulating state below 60 K. The paramagnetic spin susceptibility, and the Raman and the IR spectra suggest 4kF charge-density waves as an origin of the low-temperature insulating state.

12.
Molecules ; 21(8)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27483217

RESUMO

Naphtho[2,3-b:6,7-b']dithiophene-4,5,9,10-tetracarboxylic diimide (NDTI) is a promising electron-deficient building block for n-type organic conductors, and the performance of NDTI-based field-effect transistors (FETs) is largely dependent on the substituents that alter the supramolecular organization in the solid state and, in turn, the intermolecular orbital overlap. For this reason, the rational selection of substituent on imide nitrogen atoms and/or thiophene α-positions is the key to developing superior n-type organic semiconductors. We here report new NDTI derivatives having N-(2-cyclohexylethyl) groups. Despite their one-dimensional packing structures in the solid state regardless of the presence or absence of chlorine groups at the thiophene α-positions, their FETs show promising performance with electron mobilities higher than 0.1 cm²·V(-1)·s(-1) under ambient conditions. We also discuss how the cyclohexylethyl groups affect the packing structure in comparison with analogous n-octyl derivatives having the same number of carbon atoms.


Assuntos
Imidas/química , Química Verde , Modelos Moleculares , Estrutura Molecular , Semicondutores
13.
Angew Chem Int Ed Engl ; 55(47): 14563-14568, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27781355

RESUMO

Conducting polymers can be synthesized by irreversible diradical monomer polymerization. A reversible version of this reaction consisting of the formation/dissociation of σ-dimers and σ-polymers from a stable quinonoidal diradical precursor is described. The reaction reversibility is made by a quinonoidal molecule which changes its structure to an aromatic species by forming weak and long intermolecular C-C single bonds. The reaction provokes a giant chromic effect of about 2.5 eV. The two opposite but complementary quinonoidal and aromatic tautomers provide the Janus faces of the reactants and products which produces the observed chromic effect. A reaction mechanism is proposed to explain the variety of final products starting with structurally very similar reactants. These reversible reactions, covering an unusual regime of weak covalent supramolecular bonding, yield products which might be envisaged as novel molecular and polymeric soft matter phases.

14.
Acc Chem Res ; 47(5): 1493-502, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24785263

RESUMO

The design, synthesis, and characterization of organic semiconductors applicable to organic electronic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), had been one of the most important topics in materials chemistry in the past decade. Among the vast number of materials developed, much expectation had been placed on thienoacenes, which are rigid and planar structures formed by fusing thiophenes and other aromatic rings, as a promising candidate for organic semiconductors for high-performance OFETs. However, the thienoacenes examined as an active material in OFETs in the 1990s afforded OFETs with only moderate hole mobilities (approximately 0.1 cm(2) V(-1) s(-1)). We speculated that this was due to the sulfur atoms in the thienoacenes, which hardly contributed to the intermolecular orbital overlap in the solid state. On the other hand, we have focused on other types of thienoacenes, such as [1]benzothieno[3,2-b][1]benzothiophene (BTBT), which seem to have appropriate HOMO spatial distribution for effective intermolecular orbital overlap. In fact, BTBT derivatives and their related materials, including dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT), have turned out to be superior organic semiconductors, affording OFETs with very high mobilities. To illustrate some examples, we have developed 2,7-diphenyl BTBT (DPh-BTBT) that yields vapor-deposited OFETs having mobilities of up to 2.0 cm(2) V(-1) s(-1) under ambient conditions, highly soluble dialkyl-BTBTs (Cn-BTBTs) that afford solution-processed OFETs with mobilities higher than 1.0 cm(2) V(-1) s(-1), and DNTT and its derivatives that yield OFETs with even higher mobilities (>3.0 cm(2) V(-1) s(-1)) and stability under ambient conditions. Such high performances are rationalized by their solid-state electronic structures that are calculated based on their packing structures: the large intermolecular orbital overlap and the isotropic two-dimensional electronic structure are the key regardless of the molecular size and substituents on the BTBT and its related thienoacene cores. Along with the discovery of such attracting performances, versatile and practical methods for the synthesis of BTBT and its derivatives, and the π-extended derivatives including DNTT, dianthra[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DATT), and the thienoacenes with two thieno[3,2-b]thiophene moieties, have been developed. In addition, the materials have been recently utilized in sophisticated devices and circuits, including all-printed transistor arrays, flexible circuits on ultrathin plastic substrates, and biomedical applications, underscoring their promise as practical semiconductors for electronic device applications. These exciting results of the present BTBT-based materials are expected to open doors to new horizons of organic semiconductors in terms of practical application and the design and synthesis of far more superior materials.

15.
Chem Rec ; 15(1): 175-88, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25346498

RESUMO

Linear-fused naphthodithiophenes (NDTs) are emerging building blocks in the development of new semiconducting small molecules, oligomers, and polymers. The promising nature of NDT-based materials as organic semiconductors has been demonstrated by superior device characteristics in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs) in the last few years. In particular, it is quite impressive that a power conversion efficiency as high as 8.2% has been achieved for a single-junction OPV cell consisting of NDT-based semiconducting polymers and a fullerene derivative in such a short period of time. Here, we provide an overview of recent synthetic evolutions in NDT chemistry and progress in NDT-based materials, especially conjugated oligomers and polymers and their applications to OFETs and OPVs.

16.
Sci Technol Adv Mater ; 15(2): 024201, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877654

RESUMO

We present new semiconducting polymers incorporating naphtho[1, 2-b:5, 6-b'] dithiophene (NDT3) and naphtho[2, 1-b:6, 5-b'] dithiophene (NDT4), which are linked at the naphthalene positions, in the polymer backbone. It is interesting that the trend in the ordering structure and thus charge transport properties are quite different from what were observed in the isomeric polymers where the NDT3 and NDT4 cores are linked at the thiophene α-positions. In the thiophene-linked NDT system, the NDT3-based polymer (PNDT3BT) gave the better ordering in thin films and thus the high charge carrier mobility compared to the NDT4-based polymer (PNDT4BT). In the meantime, in the naphthalene-linked NDT system, the NDT4-based polymer (PNDT4iBT) provided the superior properties. Considering that PNDT4iBT has relatively low highest occupied molecular orbital (HOMO) energy level (-5.2 eV) and moderately high mobilities in the order of 10-2 cm2 V-1 s-1, the NDT4 core, when linked at the naphthalene positions, can be a good building unit for the development of high-performance semiconducting polymers for both organic field-effect transistors and photovoltaic devices.

17.
Adv Mater ; 36(15): e2311047, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227266

RESUMO

Rational design, synthesis, and characterization of a new efficient versatile n-type dopant with a closed-shell electronic structure are described. By employing the tetraphenyl-dipyranylidene (DP0) framework with two 7π-electron systems modified with N,N-dimethylamino groups as the strong electron-donating substituent, 2,2',6,6'-tetrakis[4-(dimethylamino)phenyl]-4,4'-dipyranylidene (DP7), a closed-shell molecule with an extremely high-lying energy level of the highest occupied molecular orbital, close to 4.0 eV below the vacuum level, is successfully developed. Thanks to its thermal stability, DP7 is applicable to vacuum deposition, which allows utilization of DP7 in bulk doping for the development of n-type organic thermoelectric materials and contact doping for reducing contact resistance in n-type organic field-effect transistors. As vacuum-deposition processable n-type dopants are very limited, DP7 stands out as a useful n-type dopant, particularly for the latter purpose.

18.
J Am Chem Soc ; 135(24): 8834-7, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23738783

RESUMO

We show that rational functionalization of the naphthodithiophene core in copolymers based on naphthodithiophene and naphthobisthiadiazole improves the solubility without an alteration of the electronic structure. Surprisingly, the introduction of linear alkyl chains brings about a drastic change in polymer orientation into the face-on motif, which is beneficial for the charge transport in solar cells. As a result, the present polymers exhibit high power conversion efficiencies of up to ~8.2% in conventional single-junction solar cells.

19.
J Am Chem Soc ; 135(31): 11445-8, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23879366

RESUMO

A straightforward synthesis of α,ß-unsubstituted and α-halogenated naphtho[2,3-b:6,7-b']dithiophenediimides (NDTIs) is described. Electrochemical and optical studies of N,N-dioctyl-NDTI demonstrate that the compound has a low-lying LUMO energy level (4.0 eV below the vacuum level) and a small HOMO-LUMO gap (~2.1 eV). With its interesting electronic and optical properties, in addition to its planar structure, NDTI is a promising building block for the development of novel π-functional materials. In fact, it afforded n-channel, p-channel, and ambipolar materials, depending on the molecular modification.

20.
J Am Chem Soc ; 135(37): 13900-13, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24010738

RESUMO

We describe a new synthetic route to the [1]benzothieno[3,2-b][1]benzothiophene (BTBT) substructure featuring two consecutive thiophene-annulation reactions from o-ethynyl-thioanisole substrates and arylsulfenyl chloride reagents that can be easily derived from arylthiols. The method is particularly suitable for the synthesis of unsymmetrical derivatives, e.g., [1]benzothieno[3,2-b]naphtho[2,3-b]thiophene, [1]benzothieno[3,2-b]anthra[2,3-b]thiophene, and naphtho[3,2-b]thieno[3,2-b]anthra[2,3-b]thiophene, a selenium-containing derivative, [1]benzothieno[3,2-b][1]benzoselenophene. It also allows us to access largely π-extended derivatives with two BTBT substructures, e.g., bis[1]benzothieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and bis[1]benzothieno[2,3-d:2',3'-d']naphtho[2,3-b:6,7-b']dithiophene (BBTNDT). It should be emphasized that these new BTBT derivatives are otherwise difficult to be synthesized. In addition, since various substrates and reagents, o-ethynyl-thioanisoles and arylthiols, respectively, can be combined, the method can be regarded as a versatile tool for the development of thienoacene-based organic semiconductors in this class. Among the newly synthesized materials, highly π-extended BBTNDT afforded very high mobility (>5 cm(2) V(-1) s(-1)) in its vapor-deposited organic field-effect transistors (OFETs), which is among the highest for unsubstituted acene- or thienoacenes-based organic semiconductors. In fact, the structural analyses of BBTNDT both in the single crystal and thin-film state indicated that an interactive two-dimensional molecular array is realized in the solid state, which rationalize the higher carrier mobility in the BBTNDT-based OFETs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA