Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 507(7493): 480-3, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670767

RESUMO

Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink.


Assuntos
Organismos Aquáticos/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Água do Mar , Animais , Oceano Atlântico , Biota , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Respiração Celular , Cadeia Alimentar , Observação , Água do Mar/química , Água do Mar/microbiologia , Incerteza , Zooplâncton/metabolismo
2.
Environ Microbiol ; 18(12): 4378-4390, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27059603

RESUMO

Open-ocean convection is a fundamental process for thermohaline circulation and biogeochemical cycles that causes spectacular mixing of the water column. Here, we tested how much the depth-stratified prokaryotic communities were influenced by such an event, and also by the following re-stratification. The deep convection event (0-1500 m) that occurred in winter 2010-2011 in the NW Mediterranean Sea resulted in a homogenization of the prokaryotic communities over the entire convective cell, resulting in the predominance of typical surface Bacteria, such as Oceanospirillale and Flavobacteriales. Statistical analysis together with numerical simulation of vertical homogenization evidenced that physical turbulence only was not enough to explain the new distribution of the communities, but acted in synergy with other parameters such as exported particulate and dissolved organic matters. The convection also stimulated prokaryotic abundance (+21%) and heterotrophic production (+43%) over the 0-1500 m convective cell, and resulted in a decline of cell-specific extracellular enzymatic activities (-67%), thus suggesting an intensification of the labile organic matter turnover during the event. The rapid re-stratification of the prokaryotic diversity and activities in the intermediate layer 5 days after the intense mixing indicated a marked resilience of the communities, apart from the residual deep mixed water patch.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Processos Heterotróficos , Mar Mediterrâneo , Estações do Ano , Água do Mar/química
3.
Extremophiles ; 20(3): 301-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27039108

RESUMO

Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.


Assuntos
Adaptação Fisiológica , Metabolismo Energético , Genoma Bacteriano , Photobacterium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Glucose/metabolismo , Pressão Hidrostática , Isoenzimas/genética , Isoenzimas/metabolismo , Maltose/metabolismo , Metilaminas/metabolismo , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Photobacterium/metabolismo , Água do Mar/microbiologia
4.
Nature ; 454(7208): 1084-7, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18756250

RESUMO

Viruses are the most abundant biological organisms of the world's oceans. Viral infections are a substantial source of mortality in a range of organisms-including autotrophic and heterotrophic plankton-but their impact on the deep ocean and benthic biosphere is completely unknown. Here we report that viral production in deep-sea benthic ecosystems worldwide is extremely high, and that viral infections are responsible for the abatement of 80% of prokaryotic heterotrophic production. Virus-induced prokaryotic mortality increases with increasing water depth, and beneath a depth of 1,000 m nearly all of the prokaryotic heterotrophic production is transformed into organic detritus. The viral shunt, releasing on a global scale approximately 0.37-0.63 gigatonnes of carbon per year, is an essential source of labile organic detritus in the deep-sea ecosystems. This process sustains a high prokaryotic biomass and provides an important contribution to prokaryotic metabolism, allowing the system to cope with the severe organic resource limitation of deep-sea ecosystems. Our results indicate that viruses have an important role in global biogeochemical cycles, in deep-sea metabolism and the overall functioning of the largest ecosystem of our biosphere.


Assuntos
Ecossistema , Água do Mar/virologia , Fenômenos Fisiológicos Virais , Biomassa , Carbono/metabolismo , Sedimentos Geológicos/virologia , Processos Heterotróficos , Pressão Hidrostática , Viabilidade Microbiana , Oceanos e Mares , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Células Procarióticas/virologia , Vírus/isolamento & purificação , Vírus/metabolismo
5.
Environ Microbiol ; 15(5): 1262-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23419081

RESUMO

Effects of hydrostatic pressure on pure cultures of prokaryotes have been studied extensively but impacts at the community level in the ocean are less well defined. Here we consider hydrostatic pressure effects on natural communities containing both unadapted (piezosensitive) prokaryotes originating from surface water and adapted (including piezophilic) prokaryotes from the deep sea. Results from experiments mimicking pressure changes experienced by particle-associated prokaryotes during their descent through the water column show that rates of degradation of organic matter (OM) by surface-originating microorganisms decrease with sinking. Analysis of a much larger data set shows that, under stratified conditions, deep-sea communities adapt to in situ conditions of high pressure, low temperature and low OM. Measurements made using decompressed samples and atmospheric pressure thus underestimate in situ activity. Exceptions leading to overestimates can be attributed to deep mixing events, large influxes of surface particles, or provision of excessive OM during experimentation. The sediment-water interface, where sinking particles accumulate, will be populated by a mixture of piezosensitive, piezotolerant and piezophilic prokaryotes, with piezophilic activity prevailing deeper within sediment. A schematic representation of how pressure shapes prokaryotic communities in the ocean is provided, allowing a reasonably accurate interpretation of the available activity measurements.


Assuntos
Organismos Aquáticos/fisiologia , Oceanos e Mares , Células Procarióticas/fisiologia , Microbiologia da Água , Pressão Hidrostática , Temperatura
6.
Microorganisms ; 11(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985346

RESUMO

Pseudothermotoga elfii strain DSM9442 and P. elfii subsp. lettingae strain DSM14385 are hyperthermophilic bacteria. P. elfii DSM9442 is a piezophile and was isolated from a depth of over 1600 m in an oil-producing well in Africa. P. elfii subsp. lettingae is piezotolerant and was isolated from a thermophilic bioreactor fed with methanol as the sole carbon and energy source. In this study, we analyzed both strains at the genomic and transcriptomic levels, paying particular attention to changes in response to pressure increases. Transcriptomic analyses revealed common traits of adaptation to increasing hydrostatic pressure in both strains, namely, variations in transport membrane or carbohydrate metabolism, as well as species-specific adaptations such as variations in amino acid metabolism and transport for the deep P. elfii DSM9442 strain. Notably, this work highlights the central role played by the amino acid aspartate as a key intermediate of the pressure adaptation mechanisms in the deep strain P. elfii DSM9442. Our comparative genomic and transcriptomic analysis revealed a gene cluster involved in lipid metabolism that is specific to the deep strain and that was differentially expressed at high hydrostatic pressures and might, thus, be a good candidate for a piezophilic gene marker in Pseudothermotogales.

7.
Nature ; 440(7081): 203-7, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16525471

RESUMO

The chemical composition of the Bannock basin has been studied in some detail. We recently showed that unusual microbial populations, including a new division of Archaea (MSBL1), inhabit the NaCl-rich hypersaline brine. High salinities tend to reduce biodiversity, but when brines come into contact with fresher water the natural haloclines formed frequently contain gradients of other chemicals, including permutations of electron donors and acceptors, that may enhance microbial diversity, activity and biogeochemical cycling. Here we report a 2.5-m-thick chemocline with a steep NaCl gradient at 3.3 km within the water column betweeen Bannock anoxic hypersaline brine and overlying sea water. The chemocline supports some of the most biomass-rich and active microbial communities in the deep sea, dominated by Bacteria rather than Archaea, and including four major new divisions of Bacteria. Significantly higher metabolic activities were measured in the chemocline than in the overlying sea water and underlying brine; functional analyses indicate that a range of biological processes is likely to occur in the chemocline. Many prokaryotic taxa, including the phylogenetically new groups, were confined to defined salinities, and collectively formed a diverse, sharply stratified, deep-sea ecosystem with sufficient biomass to potentially contribute to organic geological deposits.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Ecossistema , Oxigênio/metabolismo , Células Procarióticas/metabolismo , Água do Mar/microbiologia , Microbiologia da Água , Aerobiose , Anaerobiose , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Dados de Sequência Molecular , Oceanos e Mares , Células Procarióticas/classificação , Navios
8.
Int J Syst Evol Microbiol ; 61(Pt 11): 2706-2711, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21169465

RESUMO

A novel sulfate-reducing bacterium, designated C1TLV30(T), was isolated from wood falls at a depth of 1693 m in the Mediterranean Sea. Cells were motile vibrios (2-4 × 0.5 µm). Strain C1TLV30(T) grew at temperatures between 15 and 45 °C (optimum 30 °C) and at pH 5.4-8.6 (optimum 7.3). It required NaCl for growth (optimum at 25 g NaCl l(-1)) and tolerated up to 80 g NaCl l(-1). Strain C1TLV30(T) used as energy sources: lactate, fumarate, formate, malate, pyruvate and ethanol. The end products from lactate oxidation were acetate, H(2)S and CO(2) in the presence of sulfate as terminal electron acceptor. Besides sulfate, thiosulfate and sulfite were also used as terminal electron acceptors, but not elemental sulfur, fumarate, nitrate or nitrite. Strain C1TLV30(T) possessed desulfoviridin and was piezophilic, growing optimally at 10 MPa (range 0-30 MPa). The membrane lipid composition of this strain was examined to reveal an increase in fatty acid chain lengths at high hydrostatic pressures. The G+C content of the genomic DNA was 49.6 % and the genome size was estimated at 3.5 ± 0.5 Mb. Phylogenetic analysis of the SSU rRNA gene sequence indicated that strain C1TLV30(T) was affiliated to the genus Desulfovibrio with Desulfovibrio profundus being its closest phylogenetic relative (similarity of 96.4 %). On the basis of SSU rRNA gene sequence comparisons and physiological characteristics, strain C1TLV30(T) ( = DSM 21447(T) = JCM 1548(T)) is proposed to be assigned to a novel species of the genus Desulfovibrio, Desulfovibrio piezophilus sp. nov.


Assuntos
Desulfovibrio/classificação , Desulfovibrio/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Sulfatos/metabolismo , Composição de Bases , Desulfovibrio/química , Desulfovibrio/genética , Ácidos Graxos/metabolismo , Mar Mediterrâneo , Dados de Sequência Molecular , Oxirredução , Filogenia , Cloreto de Sódio/metabolismo
9.
Nat Commun ; 12(1): 6861, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824206

RESUMO

Carbon budgets of hydrothermal plumes result from the balance between carbon sinks through plume chemoautotrophic processes and carbon release via microbial respiration. However, the lack of comprehensive analysis of the metabolic processes and biomass production rates hinders an accurate estimate of their contribution to the deep ocean carbon cycle. Here, we use a biogeochemical model to estimate the autotrophic and heterotrophic production rates of microbial communities in hydrothermal plumes and validate it with in situ data. We show how substrate limitation might prevent net chemolithoautotrophic production in hydrothermal plumes. Elevated prokaryotic heterotrophic production rates (up to 0.9 gCm-2y-1) compared to the surrounding seawater could lead to 0.05 GtCy-1 of C-biomass produced through chemoorganotrophy within hydrothermal plumes, similar to the Particulate Organic Carbon (POC) export fluxes reported in the deep ocean. We conclude that hydrothermal plumes must be accounted for as significant deep sources of POC in ocean carbon budgets.


Assuntos
Biomassa , Processos Heterotróficos/fisiologia , Fontes Hidrotermais/microbiologia , Oceanos e Mares , Ciclo do Carbono , Crescimento Quimioautotrófico/fisiologia , Fontes Hidrotermais/química , Microbiota , Modelos Teóricos , Células Procarióticas/metabolismo , Água do Mar/química , Água do Mar/microbiologia
10.
Nat Commun ; 12(1): 4426, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285235

RESUMO

Plastic garbage patches at the ocean surface are symptomatic of a wider pollution affecting the whole marine environment. Sinking of plastic debris increasingly appears to be an important process in the global fate of plastic in the ocean. However, there is insufficient knowledge about the processes affecting plastic distributions and degradation and how this influences the release of additives under varying environmental conditions, especially in deep-sea environments. Here we show that in abiotic conditions increasing hydrostatic pressure inhibits the leaching of the heaviest organic additives such as tris(2-ethylhexyl) phosphate and diisononyl phthalate from polyethylene and polyvinylchloride materials, whereas deep-sea and surface marine prokaryotes promote the release of all targeted additives (phthalates, bisphenols, organophosphate esters). This study provides empirical evidences for more efficient additive release at the ocean surface than in deep seawater, where the major plastic burden is supposed to transit through before reaching the sediment compartment.

11.
ISME J ; 15(6): 1695-1708, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33452475

RESUMO

The vertical flux of marine snow particles significantly reduces atmospheric carbon dioxide concentration. In the mesopelagic zone, a large proportion of the organic carbon carried by sinking particles dissipates thereby escaping long term sequestration. Particle associated prokaryotes are largely responsible for such organic carbon loss. However, links between this important ecosystem flux and ecological processes such as community development of prokaryotes on different particle fractions (sinking vs. non-sinking) are yet virtually unknown. This prevents accurate predictions of mesopelagic organic carbon loss in response to changing ocean dynamics. Using combined measurements of prokaryotic heterotrophic production rates and species richness in the North Atlantic, we reveal that carbon loss rates and associated microbial richness are drastically different with particle fractions. Our results demonstrate a strong negative correlation between prokaryotic carbon losses and species richness. Such a trend may be related to prokaryotes detaching from fast-sinking particles constantly enriching non-sinking associated communities in the mesopelagic zone. Existing global scale data suggest this negative correlation is a widespread feature of mesopelagic microbes.


Assuntos
Ecossistema , Células Procarióticas , Sedimentos Geológicos , Processos Heterotróficos , Água do Mar
12.
Environ Microbiol ; 12(7): 2020-33, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20406283

RESUMO

A new piezotolerant alkane-degrading bacterium (Marinobacter hydrocarbonoclasticus strain #5) was isolated from deep (3475 m) Mediterranean seawater and grown at atmospheric pressure (0.1 MPa) and at 35 MPa with hexadecane as sole source of carbon and energy. Modification of the hydrostatic pressure influenced neither the growth rate nor the amount of degraded hexadecane (approximately 90%) during 13 days of incubation. However, the lipid composition of the cells sharply differed under both pressure conditions. At 0.1 MPa, M. hydrocarbonoclasticus #5 biosynthesized large amounts ( approximately 62% of the total cellular lipids) of hexadecane-derived wax esters (WEs), which accumulated in the cells under the form of individual lipid bodies. Intracellular WEs were also synthesized at 35 MPa, but their proportion was half that at 0.1 MPa. This lower WE content at high pressure was balanced by an increase in the total cellular phospholipid content. The chemical composition of WEs formed under both pressure conditions also strongly differed. Saturated WEs were preferentially formed at 0.1 MPa whereas diunsaturated WEs dominated at 35 MPa. This increase of the unsaturation ratio of WEs resembled the one classically observed for bacterial membrane lipid homeostasis. Remarkably, the unsaturation ratio of membrane fatty acids of M. hydrocarbonoclasticus grown at 35 MPa was only slightly higher than at 0.1 MPa. Overall, the results suggest that intracellular WEs and phospholipids play complementary roles in the physiological adaptation of strain #5 to different hydrostatic pressures.


Assuntos
Citoplasma/química , Pressão Hidrostática , Metabolismo dos Lipídeos , Marinobacter/fisiologia , Lipídeos de Membrana/análise , Estresse Fisiológico , Alcanos/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Marinobacter/crescimento & desenvolvimento , Marinobacter/isolamento & purificação , Marinobacter/metabolismo , Mar Mediterrâneo , Membranas , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Organelas/ultraestrutura , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
13.
Syst Appl Microbiol ; 43(6): 126132, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33038732

RESUMO

Hot oil reservoirs harbor diverse microbial communities, with many of them inhabiting thermophilic or hyperthermophilic fermentative Thermotogae species. A new Thermotoga sp. strain TFO was isolated from an Californian offshore oil reservoir which is phylogenetically related to thermophilic species T. petrophila RKU-1T and T. naphthophila RKU-10T, isolated from the Kubiki oil reservoir in Japan. The average nucleotide identity and DNA-DNA hybridization measures provide evidence that the novel strain TFO is closely related to T. naphthophila RKU-10T, T. petrophila RKU-1T and can not be differentiated at the species level. In the light of these results, the reclassification of T. naphthophila RKU-10 and strain TFO as heterotypic synonyms of T. petrophila is proposed. A pangenomic survey of closely related species revealed 55 TFO strain-specific proteins, many of which being linked to glycosyltransferases and mobile genetic elements such as recombinases, transposases and prophage, which can contribute to genome evolution and plasticity, promoting bacterial diversification and adaptation to environmental changes. The discovery of a TFO-specific transport system dctPQM, encoding a tripartite ATP-independent periplasmic transporter (TRAP), has to be highlighted. The presence of this TRAP system assumes that it could assist in anaerobic n-alkane degradation by addition of fumarate dicarboxylic acid, suggesting a niche-specific gene pool which correlates with the oil reservoir that T. petrophila TFO inhabits. Finally, T. naphthophila RKU-10, T. petrophila RKU-1T, T. petrophila TFO form a distinct phylogenetic lineage with different geographic origins, share the same type of ecological niche including the burial history of fields. Theses findings might support the indigenous character of this species in oil reservoirs.


Assuntos
Petróleo/microbiologia , Filogenia , Thermotoga/classificação , Anaerobiose , Técnicas de Tipagem Bacteriana , California , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Análise de Sequência de DNA , Thermotoga/isolamento & purificação
14.
Front Microbiol ; 11: 588771, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343528

RESUMO

Microorganisms living in deep-oil reservoirs face extreme conditions of elevated temperature and hydrostatic pressure. Within these microbial communities, members of the order Thermotogales are predominant. Among them, the genus Pseudothermotoga is widespread in oilfield-produced waters. The growth and cell phenotypes under hydrostatic pressures ranging from 0.1 to 50 MPa of two strains from the same species originating from subsurface, Pseudothermotoga elfii DSM9442 isolated from a deep African oil-producing well, and surface, P. elfii subsp. lettingae isolated from a thermophilic sulfate-reducing bioreactor, environments are reported for the first time. The data support evidence for the piezophilic nature of P. elfii DSM9442, with an optimal hydrostatic pressure for growth of 20 MPa and an upper limit of 40 MPa, and the piezotolerance of P. elfii subsp. lettingae with growth occurring up to 20 MPa only. Under the experimental conditions, both strains produce mostly acetate and propionate as volatile fatty acids with slight variations with respect to the hydrostatic pressure for P. elfii DSM9442. The data show that the metabolism of P. elfii DSM9442 is optimized when grown at 20 MPa, in agreement with its piezophilic nature. Both Pseudothermotoga strains form chained cells when the hydrostatic pressure increases, especially P. elfii DSM9442 for which 44% of cells is chained when grown at 40 MPa. The viability of the chained cells increases with the increase in the hydrostatic pressure, indicating that chain formation is a protective mechanism for P. elfii DSM9442.

15.
Front Microbiol ; 10: 365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886606

RESUMO

Bacterial-bioluminescence regulation is often associated with quorum sensing. Indeed, many studies have been made on this subject and indicate that the expression of the light-emission-involved genes is density dependent. However, most of these studies have concerned two model species, Aliivibrio fischeri and Vibrio campbellii. Very few works have been done on bioluminescence regulation for the other bacterial genera. Yet, according to the large variety of habitats of luminous marine bacteria, it would not be surprising to find different light-regulation systems. In this study, we used Photobacterium phosphoreum ANT-2200, a piezophilic bioluminescent strain isolated from Mediterranean deep-sea waters (2200-m depth). To answer the question of whether or not the bioluminescence of P. phosphoreum ANT-2200 is under quorum-sensing control, we focused on the correlation between growth and light emission through physiological, genomic and, transcriptomic approaches. Unlike A. fischeri and V. campbellii, the light of P. phosphoreum ANT-2200 immediately increases from its initial level. Interestingly, the emitted light increases at much higher rate at the low cell density than it does for higher cell-density values. The expression level of the light-emission-involved genes stays constant all along the exponential growth phase. We also showed that, even when more light is produced, when the strain is cultivated at high hydrostatic pressure, no change in the transcription level of these genes can be detected. Through different experiments and approaches, our results clearly indicate that, under the tested conditions, the genes, directly involved in the bioluminescence in P. phosphoreum ANT-2200, are not controlled at a transcriptomic level. Quite obviously, these results demonstrate that the light emission of the strain is not density dependent, which means not under quorum-sensing control. Through this study, we point out that bacterial-bioluminescence regulation should not, from now on, be always linked with the quorum-sensing control.

16.
Front Microbiol ; 10: 453, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024462

RESUMO

The pelagic realm of the dark ocean is characterized by high hydrostatic pressure, low temperature, high-inorganic nutrients, and low organic carbon concentrations. Measurements of metabolic activities of bathypelagic bacteria are often underestimated due to the technological limitations in recovering samples and maintaining them under in situ environmental conditions. Moreover, most of the pressure-retaining samplers, developed by a number of different labs, able to maintain seawater samples at in situ pressure during recovery have remained at the prototype stage, and therefore not available to the scientific community. In this paper, we will describe a ready-to-use pressure-retaining sampler, which can be adapted to use on a CTD-carousel sampler. As well as being able to recover samples under in situ high pressure (up to 60 MPa) we propose a sample processing in equi-pressure mode. Using a piloted pressure generator, we present how to perform sub-sampling and transfer of samples in equi-pressure mode to obtain replicates and perform hyperbaric experiments safely and efficiently (with <2% pressure variability). As proof of concept, we describe a field application (prokaryotic activity measurements and incubation experiment) with samples collected at 3,000m-depth in the Mediterranean Sea. Sampling, sub-sampling, transfer, and incubations were performed under in situ high pressure conditions and compared to those performed following decompression and incubation at atmospheric pressure. Three successive incubations were made for each condition using direct dissolved-oxygen concentration measurements to determine the incubation times. Subsamples were collected at the end of each incubation to monitor the prokaryotic diversity, using 16S-rDNA/rRNA high-throughput sequencing. Our results demonstrated that oxygen consumption by prokaryotes is always higher under in situ conditions than after decompression and incubation at atmospheric pressure. In addition, over time, the variations in the prokaryotic community composition and structure are seen to be driven by the different experimental conditions. Finally, within samples maintained under in situ high pressure conditions, the active (16S rRNA) prokaryotic community was dominated by sequences affiliated with rare families containing piezophilic isolates, such as Oceanospirillaceae or Colwelliaceae. These results demonstrate the biological importance of maintaining in situ conditions during and after sampling in deep-sea environments.

17.
Front Microbiol ; 10: 1497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379757

RESUMO

Rock-hosted subseafloor habitats are very challenging for life, and current knowledge about microorganisms inhabiting such lithic environments is still limited. This study explored the cultivable microbial diversity in anaerobic enrichment cultures from cores recovered during the International Ocean Discovery Program (IODP) Expedition 357 from the Atlantis Massif (Mid-Atlantic Ridge, 30°N). 16S rRNA gene survey of enrichment cultures grown at 10-25°C and pH 8.5 showed that Firmicutes and Proteobacteria were generally dominant. However, cultivable microbial diversity significantly differed depending on incubation at atmospheric pressure (0.1 MPa), or hydrostatic pressures (HP) mimicking the in situ pressure conditions (8.2 or 14.0 MPa). An original, strictly anaerobic bacterium designated 70B-AT was isolated from core M0070C-3R1 (1150 meter below sea level; 3.5 m below seafloor) only from cultures performed at 14.0 MPa. This strain named Petrocella atlantisensis is a novel species of a new genus within the newly described family Vallitaleaceae (order Clostridiales, phylum Firmicutes). It is a mesophilic, moderately halotolerant and piezophilic chemoorganotroph, able to grow by fermentation of carbohydrates and proteinaceous compounds. Its 3.5 Mb genome contains numerous genes for ABC transporters of sugars and amino acids, and pathways for fermentation of mono- and di-saccharides and amino acids were identified. Genes encoding multimeric [FeFe] hydrogenases and a Rnf complex form the basis to explain hydrogen and energy production in strain 70B-AT. This study outlines the importance of using hydrostatic pressure in culture experiments for isolation and characterization of autochthonous piezophilic microorganisms from subseafloor rocks.

18.
Trends Ecol Evol ; 34(11): 1022-1033, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350054

RESUMO

Global environmental changes are challenging the structure and functioning of ecosystems. However, a mechanistic understanding of how global environmental changes will affect ecosystems is still lacking. The complex and interacting biological and physical processes spanning vast temporal and spatial scales that constitute an ecosystem make this a formidable problem. A unifying framework based on ecological theory, that considers fundamental and realized niches, combined with metabolic, evolutionary, and climate change studies, is needed to provide the mechanistic understanding required to evaluate and forecast the future of marine communities, ecosystems, and their services.


Assuntos
Mudança Climática , Ecossistema , Ecologia
19.
Syst Appl Microbiol ; 41(6): 555-563, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29801938

RESUMO

The phylum Thermotogae gathers thermophilic, hyperthermophic, mesophilic, and thermo-acidophilic anaerobic bacteria that are mostly originated from geothermally heated environments. The metabolic and phenotypic properties harbored by the Thermotogae species questions the evolutionary events driving the emergence of this early branch of the universal tree of life. Recent reshaping of the Thermotogae taxonomy has led to the description of a new genus, Pseudothermotoga, a sister group of the genus Thermotoga within the order Thermotogales. Comparative genomics of both Pseudothermotoga and Thermotoga spp., including 16S-rRNA-based phylogenetic, pan-genomic analysis as well as signature indel conservation, provided evidence that Thermotoga caldifontis and Thermotoga profunda species should be reclassified within the genus Pseudothermotoga and renamed as Pseudothermotoga caldifontis comb. nov. (type strain=AZM44c09T) and Pseudothermotoga profunda comb. nov. (type strain=AZM34c06T), respectively. In addition, based upon whole-genome relatedness indices and DNA-DNA Hybridization results, the reclassification of Pseudothermotoga lettingae and Pseudothermotoga subterranea as latter heterotypic synonyms of Pseudothermotoga elfii is proposed. Finally, potential genetic elements resulting from the distinct evolutionary story of the Thermotoga and Pseudothermotoga clades are discussed.


Assuntos
Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
20.
Environ Microbiol Rep ; 8(4): 520-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27264199

RESUMO

Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element.


Assuntos
Adaptação Fisiológica , Desulfovibrio/fisiologia , Pressão Hidrostática , Estresse Fisiológico , Acetilcoenzima A/metabolismo , Metabolismo Energético , Formiatos/metabolismo , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Hidrogênio/metabolismo , Lactatos/metabolismo , Mar Mediterrâneo , Metabolômica , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA