RESUMO
We linked 4 mpox cases in South Ubangi, Democratic Republic of the Congo, to transboundary transmission from Central African Republic. Viral genome sequencing demonstrated that the monkeypox virus sequences belonged to distinct clusters of subclade Ia. This finding demonstrates the borderless nature of mpox and highlights the need for vigilant regional surveillance.
Assuntos
Monkeypox virus , Mpox , Filogenia , Monkeypox virus/genética , Monkeypox virus/classificação , República Democrática do Congo/epidemiologia , Mpox/epidemiologia , Mpox/virologia , Mpox/transmissão , Humanos , República Centro-Africana/epidemiologia , Masculino , Genoma Viral , Feminino , Adulto , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Few data are available on COVID-19 outcomes among pregnant women in sub-Saharan Africa (SSA), where high-risk comorbidities are prevalent. We investigated the impact of pregnancy on SARS-CoV-2 infection and of SARS-CoV-2 infection on pregnancy to generate evidence for health policy and clinical practice. METHODS: We conducted a 6-country retrospective cohort study among hospitalized women of childbearing age between 1 March 2020 and 31 March 2021. Exposures were (1) pregnancy and (2) a positive SARS-CoV-2 RT-PCR test. The primary outcome for both analyses was intensive care unit (ICU) admission. Secondary outcomes included supplemental oxygen requirement, mechanical ventilation, adverse birth outcomes, and in-hospital mortality. We used log-binomial regression to estimate the effect between pregnancy and SARS-CoV-2 infection. Factors associated with mortality were evaluated using competing-risk proportional subdistribution hazards models. RESULTS: Our analyses included 1315 hospitalized women: 510 pregnant women with SARS-CoV-2, 403 nonpregnant women with SARS-CoV-2, and 402 pregnant women without SARS-CoV-2 infection. Among women with SARS-CoV-2 infection, pregnancy was associated with increased risk for ICU admission (adjusted risk ratio [aRR]: 2.38; 95% CI: 1.42-4.01), oxygen supplementation (aRR: 1.86; 95% CI: 1.44-2.42), and hazard of in-hospital death (adjusted sub-hazard ratio [aSHR]: 2.00; 95% CI: 1.08-3.70). Among pregnant women, SARS-CoV-2 infection increased the risk of ICU admission (aRR: 2.0; 95% CI: 1.20-3.35), oxygen supplementation (aRR: 1.57; 95% CI: 1.17-2.11), and hazard of in-hospital death (aSHR: 5.03; 95% CI: 1.79-14.13). CONCLUSIONS: Among hospitalized women in SSA, both SARS-CoV-2 infection and pregnancy independently increased risks of ICU admission, oxygen supplementation, and death. These data support international recommendations to prioritize COVID-19 vaccination among pregnant women.
Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Feminino , Gravidez , Humanos , Lactente , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Mortalidade Hospitalar , Vacinas contra COVID-19 , Estudos de Coortes , África Subsaariana/epidemiologiaRESUMO
BACKGROUND: Monkeypox is a poorly described emerging zoonosis endemic to Central and Western Africa. METHODS: Using surveillance data from Tshuapa Province, Democratic Republic of the Congo during 2011-2015, we evaluated differences in incidence, exposures, and clinical presentation of polymerase chain reaction-confirmed cases by sex and age. RESULTS: We report 1057 confirmed cases. The average annual incidence was 14.1 per 100 000 (95% confidence interval, 13.3-15.0). The incidence was higher in male patients (incidence rate ratio comparing males to females, 1.21; 95% confidence interval, 1.07-1.37), except among those 20-29 years old (0.70; .51-.95). Females aged 20-29 years also reported a high frequency of exposures (26.2%) to people with monkeypox-like symptoms.The highest incidence was among 10-19-year-old males, the cohort reporting the highest proportion of animal exposures (37.5%). The incidence was lower among those presumed to have received smallpox vaccination than among those presumed unvaccinated. No differences were observed by age group in lesion count or lesion severity score. CONCLUSIONS: Monkeypox incidence was twice that reported during 1980-1985, an increase possibly linked to declining immunity provided by smallpox vaccination. The high proportion of cases attributed to human exposures suggests changing exposure patterns. Cases were distributed across age and sex, suggesting frequent exposures that follow sociocultural norms.
Assuntos
Mpox , Adolescente , Adulto , Criança , República Democrática do Congo/epidemiologia , Feminino , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiologia , Monkeypox virus/genética , Vacina Antivariólica , Adulto JovemRESUMO
BACKGROUND: The World Health Organization recommends periodic evaluations of influenza surveillance systems to identify areas for improvement and provide evidence of data reliability for policymaking. However, data about the performance of established influenza surveillance systems are limited in Africa, including in the Democratic Republic of Congo (DRC). METHODS: We used the Centers for Disease Control and Prevention guidelines to evaluate the performance of the influenza sentinel surveillance system (ISSS) in DRC during 2012-2015. The performance of the system was evaluated using eight surveillance attributes: (i) data quality and completeness for key variables, (ii) timeliness, (iii) representativeness, (iv) flexibility, (v) simplicity, (vi) acceptability, (vii) stability and (viii) utility. For each attribute, specific indicators were developed and described using quantitative and qualitative methods. Scores for each indicator were as follows: < 60% weak performance; 60-79% moderate performance; ≥80% good performance. RESULTS: During 2012-2015, we enrolled and tested 4339 patients with influenza-like illness (ILI) and 2869 patients with severe acute respiratory illness (SARI) from 11 sentinel sites situated in 5 of 11 provinces. Influenza viruses were detected in 446 (10.3%) samples from patients with ILI and in 151 (5.5%) samples from patients with SARI with higher detection during December-May. Data quality and completeness was > 90% for all evaluated indicators. Other strengths of the system were timeliness, simplicity, stability and utility that scored > 70% each. Representativeness, flexibility and acceptability had moderate performance. It was reported that the ISSS contributed to: (i) a better understanding of the epidemiology, circulating patterns and proportional contribution of influenza virus among patients with ILI or SARI; (ii) acquisition of new key competences related to influenza surveillance and diagnosis; and (iii) continuous education of surveillance staff and clinicians at sentinel sites about influenza. However, due to limited resources no actions were undertaken to mitigate the impact of seasonal influenza epidemics. CONCLUSIONS: The system performed overall satisfactorily and provided reliable and timely data about influenza circulation in DRC. The simplicity of the system contributed to its stability. A better use of the available data could be made to inform and promote prevention interventions especially among the most vulnerable groups.
Assuntos
Confiabilidade dos Dados , Influenza Humana/epidemiologia , Vigilância de Evento Sentinela , República Democrática do Congo/epidemiologia , Humanos , Orthomyxoviridae/isolamento & purificação , Reprodutibilidade dos TestesRESUMO
During 2004-2014, the Democratic Republic of the Congo (DRC) declared 54% of plague cases worldwide. Using national data, we characterized the epidemiology of human plague in DRC for this period. All 4,630 suspected human plague cases and 349 deaths recorded in DRC came from Orientale Province. Pneumonic plague cases (8.8% of total) occurred during 2 major outbreaks in mining camps in the equatorial forest, and some limited outbreaks occurred in the Ituri highlands. Epidemics originated in 5 health zones clustered in Ituri, where sporadic bubonic cases were recorded throughout every year. Classification and regression tree characterized this cluster by the dominance of ecosystem 40 (mountain tropical climate). In conclusion, a small, stable, endemic focus of plague in the highlands of the Ituri tropical region persisted, acting as a source of outbreaks in DRC.
Assuntos
Surtos de Doenças , Peste/epidemiologia , Animais , República Democrática do Congo/epidemiologia , Florestas , Humanos , Mineração , Exposição Ocupacional , Vigilância da População , Estudos Retrospectivos , Fatores de Tempo , ZoonosesRESUMO
To clarify the role of bats in the ecology of Ebola viruses, we assessed the prevalence of Ebola virus antibodies in a large-scale sample of bats collected during 2015-2017 from countries in Africa that have had previous Ebola outbreaks (Guinea, the Democratic Republic of the Congo) or are at high risk for outbreaks (Cameroon). We analyzed 4,022 blood samples of bats from >12 frugivorous and 27 insectivorous species; 2-37 (0.05%-0.92%) bats were seropositive for Zaire and 0-30 (0%-0.75%) bats for Sudan Ebola viruses. We observed Ebola virus antibodies in 1 insectivorous bat genus and 6 frugivorous bat species. Certain bat species widespread across Africa had serologic evidence of Zaire and Sudan Ebola viruses. No viral RNA was detected in the subset of samples tested (n = 665). Ongoing surveillance of bats and other potential animal reservoirs are required to predict and prepare for future outbreaks.
Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Quirópteros/virologia , Ebolavirus , Doença pelo Vírus Ebola/veterinária , Doenças dos Animais/história , Doenças dos Animais/imunologia , Animais , Anticorpos Antivirais , Camarões/epidemiologia , República Democrática do Congo/epidemiologia , Surtos de Doenças , Ebolavirus/classificação , Ebolavirus/genética , Ebolavirus/imunologia , Geografia Médica , Guiné/epidemiologia , História do Século XXI , Vigilância em Saúde Pública , Estudos SoroepidemiológicosRESUMO
A >600% increase in monkeypox cases occurred in the Bokungu Health Zone of the Democratic Republic of the Congo during the second half of 2013; this increase prompted an outbreak investigation. A total of 104 possible cases were reported from this health zone; among 60 suspected cases that were tested, 50 (48.1%) cases were confirmed by laboratory testing, and 10 (9.6%) tested negative for monkeypox virus (MPXV) infection. The household attack rate (i.e., rate of persons living with an infected person that develop symptoms of MPXV infection) was 50%. Nine families showed >1 transmission event, and >6 transmission events occurred within this health zone. Mean incubation period was 8 days (range 4-14 days). The high attack rate and transmission observed in this study reinforce the importance of surveillance and rapid identification of monkeypox cases. Community education and training are needed to prevent transmission of MPXV infection during outbreaks.
Assuntos
Participação da Comunidade/estatística & dados numéricos , Doença pelo Vírus Ebola/mortalidade , Conflitos Armados , Participação da Comunidade/psicologia , República Democrática do Congo/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/psicologia , Humanos , Saúde PúblicaRESUMO
Background: Malnutrition is identified as a risk-factor for insufficient polioseroconversion in the context of a vaccine-derived polio virus (VDPV) outbreak prone region. To assess the prevalence of malnutrition and its link to poliovirus insufficient immunity, a cross-sectional household survey was conducted in the regions of Haut- Lomami and Tanganyika, DRC. Methods: In March 2018, we included 968 healthy children aged 6 to 59 months from eight out of 27 districts. Selection of study locations within these districts was done using a stratified random sampling method, where villages were chosen based on habitat characteristics identified from satellite images. Consent was obtained verbally in the preferred language of the participant (French or Swahili) by interviewers who received specific training for this task. Furthermore, participants contributed a dried blood spot sample, collected via finger prick. To assess malnutrition, we measured height and weight, applying WHO criteria to determine rates of underweight, wasting, and stunting. The assessment of immunity to poliovirus types 1, 2, and 3 through the detection of neutralizing antibodies was carried out at the CDC in Atlanta, USA. Results: Of the study population, we found 24.7% underweight, 54.8% stunted, and 15.4% wasted. With IC95%, underweight (OR=1.50; [1.11-2.03]), and the non-administration of vitamin A (OR=1.96; [1.52-2.54]) were significantly associated with seronegativity to polioserotype 1. Underweight (OR=1.64; [1.20-2.24]) and the non-administration of vitamin A (OR=1.55; [1.20-2.01]) were significantly associated with seronegativity to polioserotype 2. Underweight (OR=1.50; [1.11-2.03]), and the non-administration of vitamin A (OR=1.80. [1.38-2.35]) were significantly associated with seronegativity to polioserotype 3. Underweight (OR=1.68; IC95% [1.10-2.57]) and the non-administration of vitamin A (OR=1.82; IC95% [1.30-2.55]) were significantly associated with seronegativity to all polioserotypes. Conclusion: This study reveals a significant association between underweight and polioseronegativity in children. In order to reduce vaccine failures in high-risk areas, an integrated approach by vaccination and nutrition programs should be adopted.
RESUMO
We describe the results of a prospective observational study of the clinical natural history of human monkeypox (mpox) virus (MPXV) infections at the remote L'Hopital General de Reference de Kole (Kole hospital), the rainforest of the Congo River basin of the Democratic Republic of the Congo (DRC) from March 2007 until August 2011. The research was conducted jointly by the Institute National de Recherche Biomedical (INRB) and the US Army Medical Research Institute of Infectious Diseases (USAMRIID). The Kole hospital was one of the two previous WHO Mpox study sites (1981-1986). The hospital is staffed by a Spanish Order of Catholic Nuns from La Congregation Des Soeurs Missionnaires Du Christ Jesus including two Spanish physicians, who were members of the Order as well, were part of the WHO study on human mpox. Of 244 patients admitted with a clinical diagnosis of MPXV infection, 216 were positive in both the Pan-Orthopox and MPXV specific PCR. The cardinal observations of these 216 patients are summarized in this report. There were three deaths (3/216) among these hospitalized patients; fetal death occurred in 3 of 4 patients who were pregnant at admission, with the placenta of one fetus demonstrating prominent MPXV infection of the chorionic villi. The most common complaints were rash (96.8%), malaise (85.2%), sore throat (78.2%), and lymphadenopathy/adenopathy (57.4%). The most common physical exam findings were mpox rash (99.5%) and lymphadenopathy (98.6%). The single patient without the classic mpox rash had been previously vaccinated against smallpox. Age group of less than 5 years had the highest lesion count. Primary household cases tended to have higher lesion counts than secondary or later same household cases. Of the 216 patients, 200 were tested for IgM & IgG antibodies (Abs) to Orthopoxviruses. All 200 patients had anti-orthopoxvirus IgG Abs; whereas 189/200 were positive for IgM. Patients with hypoalbuminemia had a high risk of severe disease. Patients with fatal disease had higher maximum geometric mean values than survivors for the following variables, respectively: viral DNA in blood (DNAemia); maximum lesion count; day of admission mean AST and ALT.
Assuntos
Exantema , Mpox , Humanos , Feminino , Gravidez , Pré-Escolar , Mpox/epidemiologia , República Democrática do Congo/epidemiologia , Placenta , Imunoglobulina G , Imunoglobulina M , Monkeypox virus/genéticaRESUMO
Background: Malnutrition is identified as a risk factor for insufficient polio seroconversion in the context of a vaccine-derived poliovirus (VDPV) outbreak-prone region. In the Democratic Republic of Congo (DRC), underweight decreased from 31% (in 2001) to 26% (in 2018). Since 2004, VDPV serotype 2 outbreaks (cVDPV2) have been documented and were geographically limited around the Haut-Lomami and Tanganyika Provinces. Methods: To develop and validate a predictive model for poliomyelitis vaccine response in malnourished infants, a cross-sectional household study was carried out in the Haut-Lomami and Tanganyika provinces. Healthy children aged 6 to 59 months (n=968) were enrolled from eight health zones (HZ) out of 27, in March 2018. We performed a bivariate and multivariate logistics analysis. Final models were selected using a stepwise Wald method, and variables were selected based on the criterion p < 0.05. The association between nutritional variables, explaining polio seronegativity for the three serotypes, was assessed using the receiver operating characteristic curve (ROC curve). Results: Factors significantly associated with seronegativity to the three polio serotypes were underweight, non-administration of vitamin A, and the age group of 12 to 59 months. The sensitivity was 10.5%, and its specificity was 96.4% while the positive predictive values (PPV) and negative (PNV) were 62.7% and 65.3%, respectively. We found a convergence of the curves of the initial sample and two split samples. Based on the comparison of the overlapping confidence intervals of the ROC curve, we concluded that our prediction model is valid. Conclusion: This study proposed the first tool which variables are easy to collect by any health worker in charge of vaccination or in charge of nutrition. It will bring on top, the collaboration between the Immunization and the Nutritional programs in DRC integration policy, and its replicability in other low- and middle-income countries with endemic poliovirus.
RESUMO
BACKGROUND: Zaire ebolavirus was responsible for 2 outbreaks in Democratic Republic of the Congo (DRC), in 1976 and 1995. The virus reemerged in DRC 12 years later, causing 2 successive outbreaks in the Luebo region, Kasai Occidental province, in 2007 and 2008. METHODS: Viruses of each outbreak were isolated and the full-length genomes were characterized. Phylogenetic analysis was then undertaken to characterize the relationships with previously described viruses. RESULTS: The 2 Luebo viruses are nearly identical but are not related to lineage A viruses known in DRC or to descendants of the lineage B viruses encountered in the Gabon-Republic of the Congo area, with which they do, however, share a common ancestor. CONCLUSIONS: Our findings strongly suggest that the Luebo 2007 outbreak did not result from viral spread from previously identified foci but from an independent viral emergence. The previously identified epidemiological link with migratory bat species known to carry Zaire ebolavirus RNA support the hypothesis of viral spillover from this widely dispersed reservoir. The high level of similarity between the Luebo2007 and Luebo2008 viruses suggests that local wildlife populations (most likely bats) became infected and allowed local viral persistence and reemergence from year to year.
Assuntos
Doenças Transmissíveis Emergentes/virologia , Ebolavirus/genética , Variação Genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Animais , República Democrática do Congo/epidemiologia , Surtos de Doenças , Ebolavirus/classificação , Genoma Viral , Humanos , FilogeniaRESUMO
The current worldwide monkepox outbreak has reaffirmed the continued threat monkeypox virus (MPXV) poses to public health. JYNNEOS, a Modified Vaccinia Ankara (MVA)-based live, non-replicating vaccine, was recently approved for monkeypox prevention for adults at high risk of MPXV infection in the United States. Although the safety and immunogenicity of JYNNEOS have been examined previously, the clinical cohorts studied largely derive from regions where MPXV does not typically circulate. In this study, we assess the quality and longevity of serological responses to two doses of JYNNEOS vaccine in a large cohort of healthcare workers from the Democratic Republic of Congo (DRC). We show that JYNNEOS elicits a strong orthopoxvirus (OPXV)-specific antibody response in participants that peaks around day 42, or 2 weeks after the second vaccine dose. Participants with no prior history of smallpox vaccination or exposure have lower baseline antibody levels, but experience a similar fold-rise in antibody titers by day 42 as those with a prior history of vaccination. Both previously naïve and vaccinated participants generate vaccinia virus and MPXV-neutralizing antibody in response to JYNNEOS vaccination. Finally, even though total OPXV-specific IgG titers and neutralizing antibody titers declined from their peak and returned close to baseline levels by the 2-year mark, most participants remain IgG seropositive at the 2-year timepoint. Taken together, our data demonstrates that JYNNEOS vaccination triggers potent OPXV neutralizing antibody responses in a cohort of healthcare workers in DRC, a monkeypox-endemic region. MPXV vaccination with JYNNEOS may help ameliorate the disease and economic burden associated with monkeypox and combat potential outbreaks in areas with active virus circulation.
Assuntos
Mpox , Orthopoxvirus , Vacina Antivariólica , Vacínia , Humanos , Adulto , Vaccinia virus , Mpox/epidemiologia , Mpox/prevenção & controle , República Democrática do Congo/epidemiologia , Monkeypox virus , Anticorpos Neutralizantes , Imunoglobulina GRESUMO
Cholera outbreaks have occurred in Burundi, Rwanda, Democratic Republic of Congo, Tanzania, Uganda, and Kenya almost every year since 1977-1978, when the disease emerged in these countries. We used a multiscale, geographic information system-based approach to assess the link between cholera outbreaks, climate, and environmental variables. We performed time-series analyses and field investigations in the main affected areas. Results showed that cholera greatly increased during El Nino warm events (abnormally warm El Ninos) but decreased or remained stable between these events. Most epidemics occurred in a few hotspots in lakeside areas, where the weekly incidence of cholera varied by season, rainfall, fluctuations of plankton, and fishing activities. During lull periods, persistence of cholera was explained by outbreak dynamics, which suggested a metapopulation pattern, and by endemic foci around the lakes. These links between cholera outbreaks, climate, and lake environments need additional, multidisciplinary study.
Assuntos
Cólera/epidemiologia , Surtos de Doenças , África Oriental/epidemiologia , Pesqueiros , Humanos , Incidência , Fitoplâncton , Prevalência , Estações do Ano , Clima Tropical , Vibrio choleraeRESUMO
With improved measles virus (MV) control, the genetic variability of the MV-nucleoprotein hypervariable region (NP-HVR) decreases. Thus, it becomes increasingly difficult to determine the origin of a virus using only this part of the genome. During outbreaks in Europe and Africa, we found MV strains with identical NP-HVR sequences. However, these strains showed considerable diversity within a larger sequencing window based on concatenated MV phosphoprotein and hemagglutinin genes (P/H pseudogenes). In Belarus, Germany, Russia, and the Democratic Republic of Congo, the P/H pseudogenes provided insights into chains of transmission, whereas identical NP-HVR provided none. In Russia, for instance, the P/H pseudogene identified temporal clusters rather than geographical clusters, demonstrating the circulation and importation of independent variants rather than large local outbreaks lasting for several years, as suggested by NP-HVR. Thus, by extending the sequencing window for molecular epidemiology, a more refined picture of MV circulation was obtained with more clearly defined links between outbreaks and transmission chains. Our results also suggested that in contrast to the P gene, the H gene acquired fixed substitutions that continued to be found in subsequent outbreaks, possibly with consequences for its antigenicity. Thus, a longer sequencing window has true benefits both for the epidemiological surveillance of measles and for the better monitoring of viral evolution.
Assuntos
Surtos de Doenças , Hemaglutininas Virais/genética , Vírus do Sarampo/classificação , Vírus do Sarampo/genética , Sarampo/epidemiologia , Sarampo/transmissão , Nucleoproteínas/genética , Proteínas Virais/genética , África/epidemiologia , Análise por Conglomerados , Europa (Continente)/epidemiologia , Humanos , Sarampo/virologia , Vírus do Sarampo/isolamento & purificação , Epidemiologia Molecular , Dados de Sequência Molecular , Tipagem Molecular , Proteínas do Nucleocapsídeo , Análise de Sequência de DNA , Homologia de SequênciaRESUMO
On 1 August 2018, the Democratic Republic of the Congo (DRC) declared its tenth Ebola virus disease (EVD) outbreak. To aid the epidemiologic response, the Institut National de Recherche Biomédicale (INRB) implemented an end-to-end genomic surveillance system, including sequencing, bioinformatic analysis and dissemination of genomic epidemiologic results to frontline public health workers. We report 744 new genomes sampled between 27 July 2018 and 27 April 2020 generated by this surveillance effort. Together with previously available sequence data (n = 48 genomes), these data represent almost 24% of all laboratory-confirmed Ebola virus (EBOV) infections in DRC in the period analyzed. We inferred spatiotemporal transmission dynamics from the genomic data as new sequences were generated, and disseminated the results to support epidemiologic response efforts. Here we provide an overview of how this genomic surveillance system functioned, present a full phylodynamic analysis of 792 Ebola genomes from the Nord Kivu outbreak and discuss how the genomic surveillance data informed response efforts and public health decision making.
Assuntos
Surtos de Doenças , Ebolavirus/genética , Genômica , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/genética , Análise de Sequência de DNA , Congo/epidemiologia , Vacinas contra Ebola/imunologia , Genoma Viral , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Filogenia , Recidiva , Reinfecção/virologia , Análise Espaço-TemporalRESUMO
Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers.
Assuntos
COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/genética , África Central/epidemiologia , Anticorpos Neutralizantes/imunologia , COVID-19/epidemiologia , Europa (Continente)/epidemiologia , Humanos , Evasão da Resposta Imune/genética , Mutação , Filogenia , Filogeografia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Viagem/estatística & dados numéricosRESUMO
INTRODUCTION: the control of the mosquito malaria vectors by the National Malaria Control Programme of the Democratic Republic of Congo (DRC) relies mainly on the use of long-lasting insecticide-treated nets (LLINs). However, the widespread emergence of resistance to pyrethroids is jeopardizing this control strategy. The objective of this study is to determine the status and resistance mechanisms involved in Anopheles gambiae s.l. population of DRC. METHODS: pre-imaginal stages of An. gambiae s.l. were collected and standard WHO bioassays were performed on adult An. gambiae s.l. reared in the laboratory from larvae collected from different sites in the study area. The bioassays with the synergist PBO were also performed to determine the likely implication of oxydases in the resistance. The alleles of knock down resistance (Kdr) gene and species of anopheles were determined by PCR-RLFP. RESULTS: all Anopheles mosquitoes tested belonged to the Anopheles gambiae complex. An. Gambiae (69.6%) was predominant, followed by An. Coluzzii (25.6%) and (4.8%) hybrids (An. gambiae/ An. coluzzii). Bioassays showed phenotypic resistance to the main insecticides used in the region, notably pyrethroids (deltamethrin, permethrin) and organochlorine (DDT). Only bendiocarb caused 100% mortality. Metabolic resistance involving oxidase enzymes was also detected using the synergist PBO after exposure to deltamethrin. The L1014F allele frequency of Kdr gene was detected in samples collected from all sites at varying frequencies (0.61-1.0). CONCLUSION: this study brings additional information on malaria vectors resistance to insecticides. It has shown cross-resistance to DDT and pyrethroids as well as the presence of Kdr gene. PBO significantly improved the effectiveness of deltamethrin. The results of this study can be helpful to policy makers in decision making for vector control programmes in the region.