Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(6): 1916-1922, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215312

RESUMO

Electrochemistry has extended from reactions at solid/liquid interfaces to those at solid/solid interfaces. However, photoelectrochemistry at solid/solid interfaces has been hardly reported. In this study, we achieve a stable photoelectrochemical reaction at the semiconductor-electrode/solid-electrolyte interface in a Nb-doped anatase-TiO2 (a-TiO2:Nb)/Li3PO4 (LPO)/Li all-solid-state cell. The oxidative currents of a-TiO2:Nb/LPO/Li increase upon light irradiation when a-TiO2:Nb is located at a potential that is more positive than its flat-band potential. This is because the photoexcited electrons migrate to the current collector due to the bending of the conduction band minimum toward the negative potential. The photoelectrochemical reaction at the semiconductor/solid-electrolyte interface is driven by the same principle as those at semiconductor/liquid-electrolyte interfaces. Moreover, oxidation under light irradiation exhibits reversibility with reduction in the dark. Thus, we extend photoelectrochemistry to all-solid-state systems composed of solid/solid interfaces. This extension would enable us to investigate photoelectrochemical phenomena uncleared at solid/liquid interfaces because of low stability and durability.

2.
Phys Chem Chem Phys ; 21(32): 17512-17516, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304942

RESUMO

We combined the deuterium labeling and neutron reflectivity techniques to determine the fine structure of the electric double layer structure in an imidazolium ionic liquid (IL). For this, a simple and large scale deuteration method for imidazolium ILs was developed, where the deuteration level can be systematically controlled.

5.
ACS Appl Mater Interfaces ; 13(6): 7650-7663, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33535741

RESUMO

We evaluated the structural change of the cathode material Li2MnO3 that was deposited as an epitaxial film with an (001) orientation in an all-solid-state battery. We developed an in situ surface X-ray diffraction (XRD) technique, where X-rays are incident at a very low grazing angle of 0.1°. An X-ray with wavelength of 0.82518 Å penetrated an ∼2 µm-thick amorphous Li3PO4 solid-state electrolyte and ∼1 µm-thick metal Li anode on the Li2MnO3 cathode. Experiments revealed a structural change to a high-capacity (activated) phase that proceeded gradually and continuously with cycling. The activated phase barely showed any capacity fading. First-principles calculations suggested that the activated phase has O1 stacking, which is attained by first delithiating to an intermediate phase with O3 stacking and tetrahedral Li. This intermediate phase has a low Li migration barrier path in the [001] direction, but further delithiation causes an energetically favorable and irreversible transition to the O1 phase. We propose a mechanism of structural change with cycling: charging to a high voltage at a sufficiently low Li concentration typically induces irreversible transition to a phase detrimental to cycling that could, but not necessarily, be accompanied by the dissolution of Mn and/or the release of O into the electrolyte, while a gradual irreversible transition to an activated phase happens at a similar Li concentration under a lower voltage.

6.
J Am Chem Soc ; 132(43): 15268-76, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20939527

RESUMO

Gaining a thorough understanding of the reactions on the electrode surfaces of lithium batteries is critical for designing new electrode materials suitable for high-power, long-life operation. A technique for directly observing surface structural changes has been developed that employs an epitaxial LiMn(2)O(4) thin-film model electrode and surface X-ray diffraction (SXRD). Epitaxial LiMn(2)O(4) thin films with restricted lattice planes (111) and (110) are grown on SrTiO(3) substrates by pulsed laser deposition. In situ SXRD studies have revealed dynamic structural changes that reduce the atomic symmetry at the electrode surface during the initial electrochemical reaction. The surface structural changes commence with the formation of an electric double layer, which is followed by surface reconstruction when a voltage is applied in the first charge process. Transmission electron microscopy images after 10 cycles confirm the formation of a solid electrolyte interface (SEI) layer on both the (111) and (110) surfaces and Mn dissolution from the (110) surface. The (111) surface is more stable than the (110) surface. The electrode stability of LiMn(2)O(4) depends on the reaction rate of SEI formation and the stability of the reconstructed surface structure.

7.
Phys Chem Chem Phys ; 12(15): 3815-23, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20358075

RESUMO

Surface and bulk structural changes of LiNi(0.5)Mn(0.5)O(2) were investigated during electrochemical reaction using synchrotron X-ray scattering and a restricted reaction plane consisting of two-dimensional epitaxial-film electrodes. The changes in bulk structure confirmed lithium diffusion through the (110) surface, which was perpendicular to the two-dimensional (2D) edges of the layered structure. No (de)intercalation reaction was observed through the (003) surface at voltages of 3.0-5.0 V. However, intercalation did proceed through the (003) plane below 3.0 V, indicating unusual three-dimensional (3D) lithium diffusion in the over-lithiated 2D structure. During the electrochemical process, the surface of the electrode showed different structure changes from those of the bulk structure. The reaction mechanism of the intercalation electrodes for lithium batteries is discussed on the basis of surface and bulk structural changes.

8.
Nanomaterials (Basel) ; 8(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467289

RESUMO

Platinum group metal-free (PGM-free) catalysts based on transition metal-nitrogen-carbon nanomaterials have been studied by a combination of ex situ and in situ synchrotron X-ray spectroscopy techniques; high-resolution Transmission Electron Microscope (TEM); Mößbauer spectroscopy combined with electrochemical methods and Density Functional Theory (DFT) modeling/theoretical approaches. The main objective of this study was to correlate the HO2- generation with the chemical nature and surface availability of active sites in iron-nitrogen-carbon (Fe-N-C) catalysts derived by sacrificial support method (SSM). These nanomaterials present a carbonaceous matrix with nitrogen-doped sites and atomically dispersed and; in some cases; iron and nanoparticles embedded in the carbonaceous matrix. Fe-N-C oxygen reduction reaction electrocatalysts were synthesized by varying several synthetic parameters to obtain nanomaterials with different composition and morphology. Combining spectroscopy, microscopy and electrochemical reactivity allowed the building of structure-to-properties correlations which demonstrate the contributions of these moieties to the catalyst activity, and mechanistically assign the active sites to individual reaction steps. Associated with Fe-Nx motive and the presence of Fe metallic particles in the electrocatalysts showed the clear differences in the variation of composition; processing and treatment conditions of SSM. From the results of material characterization; catalytic activity and theoretical studies; Fe metallic particles (coated with carbon) are main contributors into the HO2- generation.

9.
J Phys Chem B ; 109(26): 12832-6, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16852591

RESUMO

The kinetics of the phase transition between the (2 x 2) and (p x square root[3])-Bi structures on Au(111) was investigated using electrochemical methods and time-resolved surface X-ray diffraction. The temporal changes in the current value and the diffracted X-ray intensity that originated from the (2 x 2)-Bi overlayer were monitored during the phase transitions at various over-potentials. The phase transition models and kinetics parameters were deduced from each of the current and X-ray intensity transient curves. We also carried out comparative studies of the phase transition from the structural and electrochemical points of view. For the (p x square root[3]) --> (2 x 2) phase transition, the phase transition models determined by the X-ray and electrochemical measurements were a surface-diffusion controlled instantaneous nucleation-growth process and a Langmuir process, respectively. For the reverse transition, the phase transition models determined by X-ray and electrochemical measurements were a Langmuir adsorption process and a surface diffusion controlled nucleation-growth process, respectively. Our results revealed that the current transient curve does not always reflect the phase transition model in both cases and suggest that a structural analysis is fundamental in the phase transition studies. The disagreements between the phase transition models and their mechanisms are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA