Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(22): 8917-8924, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354246

RESUMO

Reconfigurable metamaterials require constituent nanostructures to demonstrate switching of shapes with external stimuli. Yet, a longstanding challenge is in overcoming stiction caused by van der Waals forces in the deformed configuration, which impedes shape recovery. Here, we introduce stiff shape memory polymers. This designer material has a storage modulus of ∼5.2 GPa at room temperature and ∼90 MPa in the rubbery state at 150 °C, 1 order of magnitude higher than those in previous reports. Nanopillars with diameters of ∼400 nm and an aspect ratio as high as ∼10 were printed by two-photon lithography. Experimentally, we observe shape recovery as collapsed and touching structures overcome stiction to stand back up. We develop a theoretical model to explain the recoverability of these sub-micrometer structures. Reconfigurable structural color prints with a resolution of 21150 dots per inch and holograms are demonstrated, indicating potential applications of the stiff shape memory polymers in high-resolution reconfigurable nanophotonics.


Assuntos
Nanoestruturas , Materiais Inteligentes , Polímeros/química , Impressão , Nanoestruturas/química , Fótons
2.
Small ; 16(4): e1905519, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31885136

RESUMO

Materials made by directed self-assembly of colloids can exhibit a rich spectrum of optical phenomena, including photonic bandgaps, coherent scattering, collective plasmonic resonance, and wave guiding. The assembly of colloidal particles with spatial selectivity is critical for studying these phenomena and for practical device fabrication. While there are well-established techniques for patterning colloidal crystals, these often require multiple steps including the fabrication of a physical template for masking, etching, stamping, or directing dewetting. Here, the direct-writing of colloidal suspensions is presented as a technique for fabrication of iridescent colloidal crystals in arbitrary 2D patterns. Leveraging the principles of convective assembly, the process can be optimized for high writing speeds (≈600 µm s-1 ) at mild process temperature (30 °C) while maintaining long-range (cm-scale) order in the colloidal crystals. The crystals exhibit structural color by grating diffraction, and analysis of diffraction allows particle size, relative grain size, and grain orientation to be deduced. The effect of write trajectory on particle ordering is discussed and insights for developing 3D printing techniques for colloidal crystals via layer-wise printing and sintering are provided.

3.
Small ; 9(19): 3253-8, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23554324

RESUMO

Fluorescence quenching microscopy (FQM) is demonstrated as a low-cost and high-throughput technique for seeing graphene-like 2D sheets such as MoS2 . FQM provides high contrast and layer resolution comparable to those of scanning electron microscopy, but allows the imaging of samples deposited on arbitrary substrates, including non-conductive substrates such as quartz. Solution fluorescence quenching studies suggest that FQM should be feasible for many other 2D materials such as WS2 , Bi2 Te3 , MoSe2 , NbSe2 , and TaS2 .


Assuntos
Microscopia de Fluorescência/métodos
4.
J Am Chem Soc ; 133(39): 15264-7, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21894991

RESUMO

Oxidative etching of graphene flakes was observed to initiate from edges and the occasional defect sites in the basal plane, leading to reduced lateral size and a small number of etch pits. In contrast, etching of highly defective graphene oxide and its reduced form resulted in rapid homogeneous fracturing of the sheets into smaller pieces. On the basis of these observations, a slow and more controllable etching route was designed to produce nanoporous reduced graphene oxide sheets by hydrothermal steaming at 200 °C. The degree of etching and the concomitant porosity can be conveniently tuned by etching time. In contrast to nonporous reduced graphene oxide annealed at the same temperature, the steamed nanoporous graphene oxide exhibited nearly 2 orders of magnitude increase in the sensitivity and improved recovery time when used as chemiresistor sensor platform for NO(2) detection. The results underscore the efficacy of the highly distributed nanoporous network in the low temperature steam etched GO.

5.
J Am Chem Soc ; 132(50): 17667-9, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21105686

RESUMO

Graphene oxide (GO) nanocolloids-sheets with lateral dimension smaller than 100 nm-were synthesized by chemical exfoliation of graphite nanofibers, in which the graphene planes are coin-stacked along the length of the nanofibers. Since the upper size limit is predetermined by the diameter of the nanofiber precursor, the size distribution of the GO nanosheets is much more uniform than that of common GO synthesized from graphite powders. The size can be further tuned by the oxidation time. Compared to the micrometer-sized, regular GO sheets, nano GO has very similar spectroscopic characteristics and chemical properties but very different solution properties, such as surface activity and colloidal stability. Due to higher charge density originating from their higher edge-to-area ratios, aqueous GO nanocolloids are significantly more stable. Dispersions of GO nanocolloids can sustain high-speed centrifugation and remain stable even after chemical reduction, which would result in aggregates for regular GO. Therefore, nano GO can act as a better dispersing agent for insoluble materials (e.g., carbon nanotubes) in water, creating a more stable colloidal dispersion.

6.
ACS Nano ; 14(12): 17254-17261, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33232120

RESUMO

Evaporative self-assembly of semiconducting polymers is a low-cost route to fabricating micrometer and nanoscale features for use in organic and flexible electronic devices. However, in most cases, rate is limited by the kinetics of solvent evaporation, and it is challenging to achieve uniformity over length- and time-scales that are compelling for manufacturing scale-up. In this study, we report high-throughput, continuous printing of poly(3-hexylthiophene) (P3HT) by a modified doctor blading technique with oscillatory meniscus motion-meniscus-oscillated self-assembly (MOSA), which forms P3HT features ∼100 times faster than previously reported techniques. The meniscus is pinned to a roller, and the oscillatory meniscus motion of the roller generates repetitive cycles of contact-line formation and subsequent slip. The printed P3HT lines demonstrate reproducible and tailorable structures: nanometer scale thickness, micrometer scale width, submillimeter pattern intervals, and millimeter-to-centimeter scale coverage with highly defined boundaries. The line width as well as interval of P3HT patterns can be independently controlled by varying the polymer concentration levels and the rotation rate of the roller. Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals that this dynamic meniscus control technique dramatically enhances the crystallinity of P3HT. The MOSA process can potentially be applied to other geometries, and to a wide range of solution-based precursors, and therefore will develop for practical applications in printed electronics.

7.
Adv Mater ; 30(44): e1803620, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30159920

RESUMO

Colloidal assembly is an attractive means to control material properties via hierarchy of particle composition, size, ordering, and macroscopic form. However, despite well-established methods for assembling colloidal crystals as films and patterns on substrates, and within microscale confinements such as droplets or microwells, it has not been possible to build freeform colloidal crystal structures. Direct-write colloidal assembly, a process combining the bottom-up principle of colloidal self-assembly with the versatility of direct-write 3D printing, is introduced in the present study. By this method, centimeter-scale, free-standing colloidal structures are built from a variety of materials. A scaling law that governs the rate of assembly is derived; macroscale structural color is tailored via the size and crystalline ordering of polystyrene particles, and several freestanding structures are built from silica and gold particles. Owing to the diversity of colloidal building blocks and the means to control their interactions, direct-write colloidal assembly could therefore enable novel composites, photonics, electronics, and other materials and devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA