Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 202: 107114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395207

RESUMO

Calcium-independent phospholipase A2ß (iPLA2ß), a member of the phospholipase A2 (PLA2s) superfamily, is encoded by the PLA2G6 gene. Mutations in the PLA2G6 gene have been identified as the primary cause of infantile neuroaxonal dystrophy (INAD) and, less commonly, as a contributor to Parkinson's disease (PD). Recent studies have revealed that iPLA2ß deficiency leads to neuroinflammation, iron accumulation, mitochondrial dysfunction, lipid dysregulation, and other pathological changes, forming a complex pathogenic network. These discoveries shed light on potential mechanisms underlying PLA2G6-associated neurodegeneration (PLAN) and offer valuable insights for therapeutic development. This review provides a comprehensive analysis of the fundamental characteristics of iPLA2ß, its association with neurodegeneration, the pathogenic mechanisms involved in PLAN, and potential targets for therapeutic intervention. It offers an overview of the latest advancements in this field, aiming to contribute to ongoing research endeavors and facilitate the development of effective therapies for PLAN.


Assuntos
Mutação
2.
Eur J Neurol ; 31(2): e16145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975799

RESUMO

BACKGROUND AND PURPOSE: The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS: A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS: Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS: Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/patologia , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/patologia , Expansão das Repetições de Trinucleotídeos
3.
Am J Hum Genet ; 107(5): 963-976, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157009

RESUMO

NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Feminino , Expressão Gênica , Genótipo , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/patologia , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Fenótipo , Gravidez , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Adulto Jovem
4.
Pharmacol Res ; 194: 106835, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348691

RESUMO

Maintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs. In the past few years, pharmacological regulation of mitophagy has shown promising therapeutic efficacy in various disease models. However, with the increasing number of chemical mitophagy modulator studies, frequent methodological flaws can be observed, leading some studies to draw unreliable or misleading conclusions. This review attempts (a) to summarize the molecular mechanisms of mitophagy; (b) to propose a Mitophagy Modulator Characterization System (MMCS); (c) to perform a comprehensive analysis of methods used to characterize mitophagy modulators, covering publications over the past 20 years; (d) to provide novel targets for pharmacological intervention of mitophagy. We believe this review will provide a panorama of current research on chemical mitophagy modulators and promote the development of safe and robust mitophagy modulators with therapeutic potential by introducing high methodological standards.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Mitofagia , Autofagia , Mitocôndrias/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
5.
Biochem Biophys Res Commun ; 605: 1-8, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35305493

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the highest incidence of chronic liver disease worldwide characterized by lipid accumulation in the liver. The full understanding of the lipogenesis of NAFLD is extreme importance. Here, whole-genome transcriptome analysis was performed on liver tissues of NAFLD patients and healthy controls to identify the differentially expressed genes and find new pathways and target genes related to the lipogenesis of NAFLD. Combined with the Gene Expression Omnibus (GEO) database, we found 86 overlapping genes, many of which are related to lipid metabolism of NAFLD. ECHDC1 is one of 86 overlapping genes, and its role in NAFLD has not been reported. The expression of ECHDC1 was significantly increased in liver tissue of patients with NAFLD than that of healthy controls, and oil Red O intensity was positively correlated with the expression levels of ECHDC1. Inhibition of ECHDC1 expression in HepG2 cells by RNAi significantly reduced intracellular lipid droplet number in vitro. In summary, this study analyzed pathogenic factors related to NAFLD at the whole-genome level and demonstrated that ECHDC1 may be involved in the occurrence and development of NAFLD by regulating hepatic lipid metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Perfilação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transcriptoma
6.
J Hum Genet ; 67(12): 687-690, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35996014

RESUMO

BACKGROUND: Recent researches on Parkinson's disease (PD) pathogenesis discovered the correlation between PD and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) dysfunction and reduction of PPARGC1A gene expression. Hence, we detected PPARGC1A rare variants to clarify their effect on PD risk in a large population of PD patients in mainland China. METHODS: We applied whole-exome sequencing (WES) to 1917 patients with early-onset or familial PD and 1652 controls (WES cohort), and whole-genome sequencing (WGS) to 1962 patients with sporadic late-onset PD and 1279 controls (WGS cohort). To identify PPARGC1A rare variants, we used burden analysis to assess the relationship between PPARGC1A rare variants and PD susceptibility. RESULTS: 30 rare missense variants in the cohort WES and 21 missense variants in the cohort WGS have been detected in the study and PPARGC1A missense variants are significantly associated with early-onset and familial PD susceptibility in our study (P = 0.012), which supports evidence that PPARGC1A rare variants are involved in the onset of early-onset and familial PD. CONCLUSIONS: The study suggested that PPARGC1A rare variants may contribute to the risk of early-onset and familial PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Sequenciamento do Exoma , Estudos de Coortes , China/epidemiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
7.
EMBO Rep ; 21(8): e48686, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32484300

RESUMO

Impairment of PINK1/parkin-mediated mitophagy is currently proposed to be the molecular basis of mitochondrial abnormality in Parkinson's disease (PD). We here demonstrate that PINK1 directly phosphorylates Drp1 on S616. Drp1S616 phosphorylation is significantly reduced in cells and mouse tissues deficient for PINK1, but unaffected by parkin inactivation. PINK1-mediated mitochondrial fission is Drp1S616 phosphorylation dependent. Overexpression of either wild-type Drp1 or of the phosphomimetic mutant Drp1S616D , but not a dephosphorylation-mimic mutant Drp1S616A , rescues PINK1 deficiency-associated phenotypes in Drosophila. Moreover, Drp1 restores PINK1-dependent mitochondrial fission in ATG5-null cells and ATG7-null Drosophila. Reduced Drp1S616 phosphorylation is detected in fibroblasts derived from 4 PD patients harboring PINK1 mutations and in 4 out of 7 sporadic PD cases. Taken together, we have identified Drp1 as a substrate of PINK1 and a novel mechanism how PINK1 regulates mitochondrial fission independent of parkin and autophagy. Our results further link impaired PINK1-mediated Drp1S616 phosphorylation with the pathogenesis of both familial and sporadic PD.


Assuntos
Proteínas de Drosophila , Mitofagia , Animais , Proteínas de Drosophila/genética , Humanos , Camundongos , Mitocôndrias/genética , Dinâmica Mitocondrial , Mitofagia/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
8.
Acta Pharmacol Sin ; 43(10): 2511-2526, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35217810

RESUMO

Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson's disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential use in treating PD. Thus we synthesized various derivatives of Cory B to find more potent autophagy inducers with improved brain bioavailability. In this study, we evaluated the autophagy-enhancing effect of CB6 derivative and its neuroprotective action against PD in vitro and in vivo. We showed that CB6 (5-40 µM) dose-dependently accelerated autophagy flux in cultured N2a neural cells through activating the PIK3C3 complex and promoting PI3P production. In MPP+-treated PC12 cells, CB6 inhibited cell apoptosis and increased cell viability by inducing autophagy. In MPTP-induced mouse model of PD, oral administration of CB6 (10, 20 mg· kg-1· d-1, for 21 days) significantly improved motor dysfunction and prevented the loss of dopaminergic neurons in the striatum and substantia nigra pars compacta. Collectively, compound CB6 is a brain-permeable autophagy enhancer via PIK3C3 complex activation, which may help the prevention or treatment of PD.


Assuntos
Alcaloides , Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Alcaloides/farmacologia , Animais , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/farmacologia , Neurônios Dopaminérgicos , Indóis , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/patologia , Ratos , Compostos de Espiro
9.
Acta Pharmacol Sin ; 43(5): 1251-1263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417577

RESUMO

Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.


Assuntos
Prostaglandina D2 , Prostaglandinas , Apoptose , Autofagia , Ciclopentanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408965

RESUMO

Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.


Assuntos
Doença de Alzheimer , Macroautofagia , Doença de Alzheimer/patologia , Autofagia/fisiologia , Humanos , Mitofagia/fisiologia
11.
Neurobiol Dis ; 160: 105527, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626793

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs). Mutations in PD-related genes lead to neuronal pathogenesis through various mechanisms, with known examples including SNCA/α-synuclein (PAKR1), Parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7), and LRRK2 (PARK8). Molecular chaperones/co-chaperones are proteins that aid the folding of other proteins into a functionally active conformation. It has been demonstrated that chaperones/co-chaperones interact with PD-related proteins and regulate their function in PD. HSP70, HSP90 and small heat shock proteins can prevent neurodegeneration by regulating α-syn misfolding, oligomerization and aggregation. The function of chaperones is regulated by co-chaperones such as HSP110, HSP40, HOP, CHIP, and BAG family proteins. Parkin, PINK1 and DJ-1 are PD-related proteins which are associated with mitochondrial function. Molecular chaperones regulate mitochondrial function and protein homeostasis by interacting with these PD-related proteins. This review discusses critical molecular chaperones/co-chaperones and PD-related proteins which contribute to the pathogenesis of PD, hoping to provide new molecular targets for therapeutic interventions to thwart the disease progression instead of only bringing symptomatic relief. Moreover, appreciating the critical role of chaperones in PD can also help us screen efficient biomarkers to identify PD at an early stage.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Chaperonas Moleculares/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Humanos , Doença de Parkinson/patologia , Substância Negra/patologia
12.
FASEB J ; 34(10): 13776-13791, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32816363

RESUMO

Abnormal lipid droplet (LD) metabolism causes a variety of disorders, especially to nonalcoholic fatty liver disease (NAFLD). But the mechanism of abnormal aggregation of LD is still not fully elucidated. Here, Genome-wide CRISPR-Cas9 knockout (GeCKO) screening was employed to identify candidate genes regulating LD metabolism in L02 cell. We analyzed simultaneously the transcriptomics of liver tissues of NAFLD to find potential genes involved in pathogenesis of NAFLD. After integration these data, we found that the expression of 43 candidate genes from the GeCKO screening was also decreased in tissues of NAFLD patients. Many of these 43 overlapping genes have been reported to play an important role in the formation of LD. Subsequently, we focused on CYP46A1, one of 43 candidate genes and mitochondria-related genes. We confirmed that the protein expression of CYP46A1 is deceased in tissues of NAFLD patients. Downregulation or overexpression of CYP46A1 affected LD accumulation in vitro. Deficiency of CYP46A1 impaired mitochondrial morphology and function, which may be responsible for the accumulation of LD. In summary, this study explored regulatory factors of LD accumulation at the whole-genome level, and demonstrated that CYP46A1 regulated LD formation involving in NAFLD pathogenesis. It provides new clues for studying the molecular mechanisms of diseases related to abnormal lipid metabolism.


Assuntos
Colesterol 24-Hidroxilase/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Sistemas CRISPR-Cas , Colesterol 24-Hidroxilase/genética , Feminino , Técnicas de Inativação de Genes/métodos , Genômica/métodos , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transcriptoma
13.
Exp Cell Res ; 395(1): 112175, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679233

RESUMO

Autophagy is a basic catabolic response that eukaryotic cells use to degrade unnecessary or dysfunctional cellular components in an orderly and regulated manner. It plays important roles in maintaining cellular homeostasis, energy homeostasis, response to environmental stimuli, and the development of cancer. In solid tumors, hypoxia induces an increased HIF-1a that activates autophagy. However, the exact mechanism by which induced HIF-1a stimulates autophagy in cancer cells remains elusive. In the present study, we confirmed that ANKRD37 is upregulated in colon cancer tissue. Moreover, the higher expression level of ANKRD37 is related to a poorer survival rate. Using RNA interference, immunoblot, and immunofluorescence, we discovered that in cancer cell line RKO, hypoxia-induced HIF-1a regulates autophagy activity by increasing ANKRD37 level. In addition, intranuclear ANKRD37 played an important role in the regulation of hypoxia-induced autophagy. The translocation of ANKRD37 into cell nuclear is required for promoting cell growth and HIF-1a induced autophagy. These findings provide new insights to understand the hypoxia regulation mechanisms and the role of autophagy in cancer development.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Autofagia/genética , Autofagia/fisiologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/farmacologia , Interferência de RNA/efeitos dos fármacos , Interferência de RNA/fisiologia , Ativação Transcricional/fisiologia
14.
J Cell Mol Med ; 24(5): 3079-3090, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961998

RESUMO

The canonical Wnt signalling pathway is a critical pathway involved in the proliferation of cells. It has been well-established that it plays the central role during colorectal carcinogenesis and development. Yet the exact molecular mechanism of how the canonical Wnt pathway is fine-tuned remains elusive. We found that SLC35C1, a GDP-fucose transporter, negatively regulates the Wnt signalling pathway. We show here that SLC35C1 is reduced in all colon cancer by both immunohistochemistry images and TCGA data, whereas ß-catenin is increased. Down-regulation of SLC35C1 is also detected by real-time PCR in stage 3 and stage 4 colorectal cancer tissues. Moreover, analysing the TCGA database with cBioPortal reveals the negative correlation of SLC35C1 mRNA level to the expression of ß-catenin. Reduced SLC35C1 significantly promotes cell proliferation and colony formation of HEK293 cells. Meanwhile, in HEK293 cells silencing SLC35C1 activates canonical Wnt pathway, whereas overexpressing SLC35C1 inhibits it. Consistently, the reduction of SLC35C1 in HEK293 cells also elevated the mRNA level of Wnt target genes C-myc, Axin2 and Cyclin D1, as well as the secretion of Wnt3a. In conclusion, we identified SLC35C1 as a negative regulator of the Wnt signalling pathway in colon cancer. Decreased SLC35C1 may cause over-activation of Wnt signalling in colorectal cancer.


Assuntos
Neoplasias do Colo/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteína Wnt3A/genética , beta Catenina/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/patologia , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Via de Sinalização Wnt/genética
15.
J Cell Mol Med ; 24(16): 9313-9322, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32618081

RESUMO

Recanalization therapy by intravenous thrombolysis or endovascular therapy is critical for the treatment of cerebral infarction. However, the recanalization treatment will also exacerbate acute brain injury and even severely threatens human life due to the reperfusion injury. So far, the underlying mechanisms for cerebral ischaemia-reperfusion injury are poorly understood and effective therapeutic interventions are yet to be discovered. Therefore, in the research, we subjected SK-N-BE(2) cells to oxygen-glucose deprivation/reperfusion (OGDR) insult and performed a pooled genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) knockout screen to discover new potential therapeutic targets for cerebral ischaemia-reperfusion injury. We used Metascape to identify candidate genes which might involve in OGDR resistance. We found that the genes contributed to OGDR resistance were primarily involved in neutrophil degranulation, mitochondrial translation, and regulation of cysteine-type endopeptidase activity involved in apoptotic process and response to oxidative stress. We then knocked down some of the identified candidate genes individually. We demonstrated that MRPL19, MRPL32, MRPL52 and MRPL51 inhibition increased cell viability and attenuated OGDR-induced apoptosis. We also demonstrated that OGDR down-regulated the expression of MRPL19 and MRPL51 protein. Taken together, our data suggest that genome-scale screening with Cas9 is a reliable tool to analyse the cellular systems that respond to OGDR injury. MRPL19 and MRPL51 contribute to OGDR resistance and are supposed to be promising targets for the treatment of cerebral ischaemia-reperfusion damage.


Assuntos
Sistemas CRISPR-Cas , Glucose/deficiência , Proteínas Mitocondriais/antagonistas & inibidores , Neuroblastoma/patologia , Oxigênio/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Proteínas Ribossômicas/antagonistas & inibidores , Regulação da Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estresse Oxidativo , Proteínas Ribossômicas/genética , Células Tumorais Cultivadas
16.
Biochem Biophys Res Commun ; 521(4): 1024-1029, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31727366

RESUMO

Mutations in PINK1 and Parkin result in early-onset autosomal recessive Parkinson's disease (PD). PINK1/Parkin pathway maintain mitochondrial function by mediating the clearance of damaged mitochondria. However, the role of PINK1/Parkin in maintaining the balance of mtDNA heteroplasmy is still unknown. Here, we isolated mitochondrial DNA (mtDNA) from cortex, striatum and substantia nigra of wildtype (WT), PINK1 knockout (PINK1 KO) and Parkin knockout (Parkin KO) mice to analyze mtDNA heteroplasmy induced by PINK1/Parkin deficiency or aging. Our results showed that the Single Nucleotide Variants (SNVs) of late-onset somatic variants mainly increased with aging. Conversely, the early-onset somatic variants exhibited significant increase in the cortex and substantia nigra of PINK1 KO mice than WT mice of the same age. Increased average variant allele frequency was observed in aged PINK1 KO mice and in substantial nigra of aged Parkin KO mice than in WT mice. Cumulative variant allele frequency in the substantia nigra of PINK1 KO mice was significantly higher than that in WT mice, further supporting the pivotal role of PINK1 in mtDNA maintenance. This study presented a new evidence for PINK1 and Parkin in participating in mitochondrial quality control and provided clues for further revealing the role of PINK1 and Parkin in the pathogenesis of PD.


Assuntos
DNA Mitocondrial/genética , Proteínas Quinases/deficiência , Substância Negra/metabolismo , Envelhecimento/genética , Animais , Encéfalo/metabolismo , Variações do Número de Cópias de DNA/genética , Frequência do Gene/genética , Camundongos Knockout , Taxa de Mutação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
17.
J Cell Physiol ; 234(6): 9184-9193, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317623

RESUMO

Tumor necrosis factor α (TNF-α), a pivotal cytokine in sepsis, protects the host against pathogens by promoting an inflammatory response while simultaneously inducing apoptosis of the vascular endothelium. Unfortunately, inhibitors targeting certain components of the TNF-α signaling pathway to reduce cellular apoptosis have failed to translate into clinical applications, partly due to the adverse effects of excessive immunosuppression. In an attempt to discover potential targets in the TNF-α signaling pathway to modulate moderate inflammation and apoptosis during the development of sepsis, we performed a pooled genome-wide CRISPR/Cas9 knockout screen in human umbilical vein endothelial cells (HUVECs). Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), B-cell lymphoma 2 (BCL2), Bcl2-associated death promoter (BAD), and NLR family member X1 (NLRX1) deficiencies were identified as the effective genetic suppressors of TNF-α cytotoxicity on a list of candidate regulators. CRISPR-mediated NLRX1 knockout conferred cellular resistance to challenge with TNF-α, and NLRX1 could be induced to colocalize with mitochondria following TNF-α stimulation. Thus, our work demonstrates the advantage of genome-scale screening with Cas9 and validates NLRX1 as a potential modulator of TNF-α-induced vascular endothelial apoptosis during sepsis.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/efeitos dos fármacos , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo
18.
Hum Genet ; 137(2): 141-150, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29356939

RESUMO

Reticulon 3 (RTN3) is a neuronally-expressed reticulon family protein that was previously shown to negatively regulate BACE1, a protease that is required for the generation of ß-amyloid peptides (Aß) from amyloid precursor protein. Despite biochemical and morphological evidence that supports a role of RTN3 in the formation of neuritic amyloid plaques, no systematic analyses of RTN3 mutations in patients with Alzheimer's disease (AD) have yet been reported. RTN3 were targeted sequenced in 154 sporadic early-onset and 285 late-onset AD patients. Luciferase reporter assay and kymographs were performed to analysis the expression of RNT3 and BACE1-RFP particle mobility on cells transfected with wild-type or variants RTN3 constructs. We identified heterozygous variants such as c.-8G > T, c.17C > A, c.42C > T, and c.116C > T from patients in the early-onset AD group and c.-8G > T, c.17C > A, from patients in the late-onset AD group. Such variants of RTN3 were not observed in control individuals. Further biochemical studies show that the RTN3 c.-8G > T variant in the 5'-untranslated region appears to cause reduced expression of RTN3. The RTN3 c.116 C > T variant causes a change of codon T39 to M39 (T39 M). Overexpression of RTN3 T39 M in cultured neurons led to impaired axonal transport of BACE1. The variants found in this study are likely genetic modifiers for RTN3-mediated formation of neuritic plaques in AD.


Assuntos
Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Ácido Aspártico Endopeptidases/genética , Proteínas de Transporte/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Adulto , Idoso , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Transporte Axonal/genética , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Neurônios/metabolismo , Neurônios/fisiologia
19.
Cell Physiol Biochem ; 48(4): 1492-1504, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071537

RESUMO

BACKGROUND/AIMS: We have reported the neuroprotective properties of Heat shock protein B8(HSPB8) against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury by inhibiting the mitochondrial apoptotic pathway. However, the exact underlying mechanism of its protective effect on mitochondrial function remains unknown. Here we examined whether the beneficial effect of HSPB8 on OGD/R-induced cell death is associated with mitophagy in mouse neuroblastoma Neuro2a (N2a) cells. METHODS: Using the mouse transient middle cerebral artery occlusion (tMCAO) model and mouse neuroblastoma Neuro2a (N2a) cell cultures subjected to OGD/R, we employed western-blot, RT-PCR and immunostaining to analyze the change of expression pattern of HSPB8 and mitophagic flux after brain I/R both in vivo and in vitro. Moreover, via overexpressing HSPB8 or knocking down HSPB8 expression with siRNA in N2a cell, we evaluated the effect of HSPB8 on mitochondrial function during OGD/R. The impact of HSPB8 on mitophagic pathway was also assessed. Finally, mitotophagy inhibitors (CQ and Mdivi-1) were adopted to verify the involvement of mitophagy in HSPB8- induced neuroprotection. RESULTS: HSPB8 could be up-regulated by brain I/R both in vivo and in vitro. Mitophagy enhancement coincided with induction of HSPB8 during I/R. Overexpression of HSPB8 reinforced I/R-induced mitophagy in OGD/R-treated mouse N2a cells and HSPB8 silence suppressed mitophagy process. Inhibition of mitophagy compromised neuroprotection conferred by HSPB8 overexpression. CONCLUSIONS: HSPB8 promoted OGD/R-induced mitophagy, which restored the mitochondrial function and contributed to the decrease in cell apoptosis after OGD/R. Therefore, HSPB8 could be a favorable neuroprotective agent for cerebral I/R related disorders.


Assuntos
Glucose/metabolismo , Proteínas de Choque Térmico HSP20/metabolismo , Mitofagia , Proteínas Musculares/metabolismo , Animais , Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Hipóxia Celular , Linhagem Celular , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP20/antagonistas & inibidores , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico , Infarto da Artéria Cerebral Média/complicações , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Chaperonas Moleculares , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Traumatismo por Reperfusão/patologia , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo
20.
J Biol Chem ; 291(7): 3531-40, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26699403

RESUMO

Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP(+))-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP(+)-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP(+)-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.


Assuntos
Autofagia , Neurônios Dopaminérgicos/metabolismo , Histonas/metabolismo , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Idoso , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/patologia , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , Bancos de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA