RESUMO
We used a novel NF-08-TM transplant protocol based on intravenous busulfan, cyclophosphamide, fludarabine, and thiotepa in 82 consecutive patients with ß-thalassemia major (TM), including 52 with allogeneic peripheral blood stem cell transplantation (PBSCT) from unrelated donors (UDs) with well-matched human leukocyte antigens and 30 with hematopoietic stem cell transplantation (HSCT) from matched sibling donors (MSDs). The median age at transplantation was 6.0 years (range, 0.6-15.0 years), and the ratio of male-to-female patients was 56:26. The median follow-up time was 24 months (range, 12-39 months). The estimated 3-year overall survival and TM-free survival were 92.3% and 90.4% in the UD-PBSCT group and 90.0% and 83.3% in the MSD-HSCT group. The cumulative incidences of graft rejection and grades III-IV acute graft-versus-host disease were 1.9% and 9.6%, respectively, in the UD-PBSCT group and 6.9% and 3.6%, respectively, in the MSD-HSCT group. The cumulative incidence of transplant-related mortality was 7.7% in the UD-PBSCT group and 10.0% in the MSD-HSCT group. In conclusion, UD-PBSCTs using the well-tolerated NF-08-TM protocol show similar results to MSD-HSCTs and can be used to treat ß-thalassemia patients in the absence of MSDs.
Assuntos
Transplante de Células-Tronco de Sangue Periférico , Condicionamento Pré-Transplante , Doadores não Relacionados , Talassemia beta/terapia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Sobrevivência de Enxerto , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transplante de Células-Tronco de Sangue Periférico/efeitos adversos , Resultado do Tratamento , Adulto Jovem , Talassemia beta/complicações , Talassemia beta/mortalidadeRESUMO
This study investigated a novel electrolyte chamber configuration for heavy-metal-contaminated fine-grained soil to reduce the leakage of electrolyte solution and alleviate secondary pollution, finally promoting the electrokinetic remediation (EKR) potential to be scaled up for application. Experiments were conducted on clay spiked with Zn to investigate the feasibility of the novel EKR configuration and the effect of different electrolyte compositions on the electrokinetic remedial efficiency. The results show that the electrolyte chamber situated above the soil surface is promising for the remediation of Zn-contaminated soft clay. Using 0.2 M citric acid as the anolytes and catholytes was an excellent choice for pH control in the soil and the electrolytes. Through this, the removal efficiency in different soil sections was relatively uniform and more than 90% of the initial Zn was removed. The supplementing of electrolytes resulted in the water content in the soil being distributed evenly and finally sustained at approximately 43%. Consequently, this study proved that the novel EKR configuration is suitable for fine-grained soil contaminated with Zn.
RESUMO
Despite the extensive application prospects of piles in cement-treated soil, few studies have explored the ultimate bearing capacity especially in consideration of the spatial variability of cement-treated soil. This study examines the performance of driven piles which were installed inside the cement-treated ground, considering the inherent spatial variability of the cemented soil and the positioning error during piles installation through finite element analyses. The deterministic and random finite element analysis results have shown that the shaft resistance mainly provided the ultimate bearing resistance of piles in cement-treated soil. The spatial variability reduced the global performance of pile installed through a cement-treated soil. The ultimate bearing resistance of the pile inserted in cement-treated soil was controlled by drained condition. Drained ultimate bearing resistance should be used to determine the design working compression load of pile in cement-treated soil.